Project description:Acute bouts of resistance exercise and subsequent training alters protein turnover in skeletal muscle. The mechanisms responsible for the changes in basal post-absorptive protein turnover and its impact on muscle hypertrophy following resistance exercise training are unknown. Our goal was to determine whether post-absorptive muscle protein turnover following 12 weeks of resistance exercise training (RET) plays a role in muscle hypertrophy. In addition, we were interested in determining potential molecular mechanisms responsible for altering post-training muscle protein turnover.Healthy young men (n?=?31) participated in supervised whole body progressive RET at 60-80% 1 repetition maximum (1-RM), 3 days/week for 3 months. Pre- and post-training vastus lateralis muscle biopsies and blood samples taken during an infusion of 13C6 and 15N phenylalanine and were used to assess skeletal muscle protein turnover in the post-absorptive state. Lean body mass (LBM), muscle strength (determined by dynamometry), vastus lateralis muscle thickness (MT), myofiber type-specific cross-sectional area (CSA), and mRNA were assessed pre- and post-RET.RET increased strength (12-40%), LBM (~5%), MT (~15%) and myofiber CSA (~20%) (p?<?0.05). Muscle protein synthesis (MPS) increased 24% while muscle protein breakdown (MPB) decreased 21%, respectively. These changes in protein turnover resulted in an improved net muscle protein balance in the basal state following RET. Further, the change in basal MPS is positively associated (r?=?0.555, p?=?0.003) with the change in muscle thickness.Post-absorptive muscle protein turnover is associated with muscle hypertrophy during resistance exercise training.
Project description:BACKGROUND:Cardioskeletal myopathy is thought to contribute to exercise intolerance, and reduced quality of life (QOL) in Barth syndrome (BTHS). The objectives of this study were to examine: (1) skeletal muscle strength/performance in adolescents and young adults with BTHS and (2) the safety, feasibility, and initial efficacy of 12 weeks of progressive resistance exercise training (RET) on muscle strength, mass, and performance, bone mineral density, exercise tolerance, cardiac function, and QOL in individuals with BTHS. METHODS:Individuals with BTHS (n = 9, 23 ± 6 years), and age-, sex-, and activity level-matched unaffected Controls (n = 7, 26 ± 5 years) underwent baseline testing to assess muscle performance, exercise capacity, cardiac structure and function, body composition, and health-related QOL. Subsequently, n = 3 participants with BTHS performed 12 weeks of supervised RET (60 min per session, 3 sessions/week). All testing was repeated post-RET. RESULTS:BTHS had lower strength and lean muscle mass compared to Controls (all p < 0.05). BTHS also had diminished lower extremity, upper extremity, thoracic spine, lumbar spine, and pelvic bone mineral density (all p < 0.05) and reduced exercise capacity (p < 0.001) compared to Controls. RET was well-tolerated and attended, was not associated with any adverse events, and significantly increased muscle strength (p < 0.05). CONCLUSIONS:Individuals with BTHS demonstrate reduced muscle strength and mass, bone mineral density, and exercise capacity. RET appears safe and well-tolerated in BTHS and promotes increased muscle strength. Larger studies are needed to confirm these improvements and to fully determine the effects of RET in individuals with BTHS.
Project description:The aim of this work was to produce a reproducible molecular signature of human muscle responses to resistance training and examine how such a profile relates to new and established exercise adaptation gene networks. Subjects were recruited from an age range of 18 to 75 y. Before beginning the study all subjects were screened using a medical questionnaire, physical examination and resting ECG with exclusions for overt muscle wasting (>2 SD below age norms)[85], metabolic, respiratory/cardiovascular disorders or other major contraindications to a healthy status. All subjects had normal blood chemistry and were normotensive (BP <140/90). All subjects performed routine activities of daily living and recreation but did not participate in moderate to high intensity aerobic exercise and none had participated in RET in the last 24 months. Body composition was measured at screening and following RET by dual energy X-ray absorptiometry (DEXA) (Lunar Prodigy II, GE Medical Systems). Subject positioning on the DEXA bed was optimized to allow the region of interest (ROI) body compartments to be analyzed separately. The upper leg ROI was selected as the area inferior to the lowest visible point of the coccyx to the mid-point of the patella. The dataset comprises 44 pre-exercise and 44 post-exercise samples. In addition there is a baseline sample NB021_pre-training (D13_NB021F). Therefore there are 89 samples in total. (Note: Singleton baseline sample NB021_pre-training was normalized only using all baseline samples.) Derby dataset.
Project description:OBJECTIVES:Adequate muscle perfusion supports the transport of nutrients, oxygen and hormones into muscle fibers. Aging is associated with a substantial decrease in skeletal muscle capillarization, fiber size and oxidative capacity, which may be improved with regular physical activity. The aim of this study was to investigate the relationship between muscle capillarization and indices of muscle hypertrophy (i.e. lean mass; fiber cross sectional area (CSA)) in older adults before and after 12?weeks of progressive resistance exercise training (RET). DESIGN:Interventional study SETTING AND PARTICIPANTS: 19 subjects (10 male and 9 female; 71.1?±?4.3?years; 27.6?±?3.2 BMI) were enrolled in the study and performed a whole body RET program for 12?weeks. Subjects where then retrospectively divided into a LOW or HIGH group, based on their pre-RET capillary-to-fiber perimeter exchange index (CFPE). Physical activity level, indices of capillarization (capillaries-to-fiber ratio, C:Fi; CFPE index and capillary-to-fiber interface, LC-PF index), muscle hypertrophy, muscle protein turnover and mitochondrial function were assessed before and after RET. RESULTS:Basal capillarization (C:Fi; CFPE and LP-CF index) correlates with daily physical activity level (C:Fi, r?=?0.57, p?=?0.019; CFPE index, r?=?0.55, p?=?0.024; LC-PF index, r?=?0.56, p?=?0.022) and CFPE and LC-PF indices were also positively associated with oxidative capacity (respectively r?=?0.45, p?=?0.06; r?=?0.67, p?=?0.004). Following RET, subjects in the HIGH group underwent hypertrophy with significant improvements in muscle protein synthesis and muscle fiber CSA (p?<?0.05). However, RET did not promote muscle hypertrophy in the LOW group, but RET significantly increased muscle capillary density (p?<?0.05). CONCLUSION/IMPLICATIONS:Muscle fiber capillarization before starting an exercise training program may be predictive of the muscle hypertrophic response to RET in older adults. Increases in muscle fiber size following RET appear to be blunted when muscle capillarization is low, suggesting that an adequate initial capillarization is critical to achieve a meaningful degree of muscle adaptation to RET.
Project description:The effect of resistance exercise with the ingestion of supplementary protein on the activation of the mTOR cascade, in human skeletal muscle has not been fully elucidated. In this study, the impact of a single bout of resistance exercise, immediately followed by a single dose of whey protein isolate (WPI) or placebo supplement, on the activation of mTOR signalling was analyzed. Young untrained men completed a maximal single-legged knee extension exercise bout and were randomized to ingest either WPI supplement (n = 7) or the placebo (n = 7). Muscle biopsies were taken from the vastus lateralis before, and 2, 4 and 24 h post-exercise. WPI or placebo ingestion consumed immediately post-exercise had no impact on the phosphorylation of Akt (Ser473). However, WPI significantly enhanced phosphorylation of mTOR (Ser2448), 4E-BP1 (Thr(37/46)) and p70(S6K) (Thr389) at 2 h post-exercise. This study demonstrates that a single dose of WPI, when consumed in modest quantities, taken immediately after resistance exercise elicits an acute and transient activation of translation initiation within the exercised skeletal muscle.
Project description:KEY POINTS:Resistance exercise training (RET) is one of the most effective strategies for preventing declines in skeletal muscle mass and strength with age. Hypertrophic responses to RET with age are diminished compared to younger individuals. In response to 6 weeks RET, we found blunted hypertrophic responses with age are underpinned by chronic deficits in long-term muscle protein synthesis. We show this is likely to be the result of multifactorial deficits in anabolic hormones and blunted translational efficiency and capacity. These results provide great insight into age-related exercise adaptations and provide a platform on which to devise appropriate nutritional and exercise interventions on a longer term basis. ABSTRACT:Ageing is associated with impaired hypertrophic responses to resistance exercise training (RET). Here we investigated the aetiology of 'anabolic resistance' in older humans. Twenty healthy male individuals, 10 younger (Y; 23 ± 1 years) and 10 older (O; 69 ± 3 years), performed 6 weeks unilateral RET (6 × 8 repetitions, 75% of one repetition maximum (1-RM), 3 times per week). After baseline bilateral vastus lateralis (VL) muscle biopsies, subjects consumed 150 ml D2 O (70 atom%; thereafter 50 ml week-1 ), further bilateral VL muscle biopsies were taken at 3 and 6 weeks to quantify muscle protein synthesis (MPS) via gas chromatography-pyrolysis-isotope ratio mass spectrometry. After RET, 1-RM increased in Y (+35 ± 4%) and O (+25 ± 3%; P < 0.01), while MVC increased in Y (+21 ± 5%; P < 0.01) but not O (+6 ± 3%; not significant (NS)). In comparison to Y, O displayed blunted RET-induced increases in muscle thickness (at 3 and 6 weeks, respectively, Y: +8 ± 1% and +11 ± 2%, P < 0.01; O: +2.6 ± 1% and +3.5 ± 2%, NS). While 'basal' longer term MPS was identical between Y and O (?1.35 ± 0.1% day-1 ), MPS increased in response to RET only in Y (3 weeks, Y: 1.61 ± 0.1% day-1 ; O: 1.49 ± 0.1% day-1 ). Consistent with this, O exhibited inferior ribosomal biogenesis (RNA:DNA ratio and c-MYC induction: Y: +4 ± 2 fold change; O: +1.9 ± 1 fold change), translational efficiency (S6K1 phosphorylation, Y: +10 ± 4 fold change; O: +4 ± 2 fold change) and anabolic hormone milieu (testosterone, Y: 367 ± 19; O: 274 ± 19 ng dl-1 (all P < 0.05). Anabolic resistance is thus multifactorial.
Project description:The factors that underpin heterogeneity in muscle hypertrophy following resistance exercise training (RET) remain largely unknown. We examined circulating hormones, intramuscular hormones, and intramuscular hormone-related variables in resistance-trained men before and after 12 weeks of RET. Backward elimination and principal component regression evaluated the statistical significance of proposed circulating anabolic hormones (e.g., testosterone, free testosterone, dehydroepiandrosterone, dihydrotestosterone, insulin-like growth factor-1, free insulin-like growth factor-1, luteinizing hormone, and growth hormone) and RET-induced changes in muscle mass (n = 49). Immunoblots and immunoassays were used to evaluate intramuscular free testosterone levels, dihydrotestosterone levels, 5?-reductase expression, and androgen receptor content in the highest- (HIR; n = 10) and lowest- (LOR; n = 10) responders to the 12 weeks of RET. No hormone measured before exercise, after exercise, pre-intervention, or post-intervention was consistently significant or consistently selected in the final model for the change in: type 1 cross sectional area (CSA), type 2 CSA, or fat- and bone-free mass (LBM). Principal component analysis did not result in large dimension reduction and principal component regression was no more effective than unadjusted regression analyses. No hormone measured in the blood or muscle was different between HIR and LOR. The steroidogenic enzyme 5?-reductase increased following RET in the HIR (P < 0.01) but not the LOR (P = 0.32). Androgen receptor content was unchanged with RET but was higher at all times in HIR. Unlike intramuscular free testosterone, dihydrotestosterone, or 5?-reductase, there was a linear relationship between androgen receptor content and change in LBM (P < 0.01), type 1 CSA (P < 0.05), and type 2 CSA (P < 0.01) both pre- and post-intervention. These results indicate that intramuscular androgen receptor content, but neither circulating nor intramuscular hormones (or the enzymes regulating their intramuscular production), influence skeletal muscle hypertrophy following RET in previously trained young men.
Project description:Physical activity and nutritional supplementation interventions may be used to ameliorate age-related loss of skeletal muscle mass and function. Previous reviews have demonstrated the beneficial effects of resistance exercise training (RET) combined with protein or essential amino acids (EAA) in younger populations. Whether or not older adults also benefit is unclear. The aim of this review was to determine whether regular dietary supplementation with protein/EAA during a RET regimen augments the effects of RET on skeletal muscle in older adults.A literature search was conducted in August 2015 using MEDLINE, EMBASE, SPORTDiscus, and CINAHL Plus to identify all controlled trials using a RET regimen with and without protein/EAA supplementation. Outcome variables included muscle strength, muscle size, functional ability, and body composition.Fifteen studies fulfilled the eligibility criteria, including 917 participants with a mean age of 77.4 years. Studies involving both healthy participants and those described as frail or sarcopenic were included. Overall, results indicated that protein supplementation did not significantly augment the effects of RET on any of the specified outcomes. Exceptions included some measures of muscle strength (3 studies) and body composition (2 studies). Meta-analyses were conducted but were limited because of methodologic differences between studies, and results were inconclusive.Systematic review and meta-analysis of controlled trials reveal that protein/EAA supplementation does not significantly augment the effects of progressive RET in older adults.
Project description:BACKGROUND:Understanding the root cause of the age-related impairment in muscle adaptive remodelling with resistance exercise training (RET) and developing pragmatic and accessible resistance exercise for older adults, are essential research directives. METHODS:We sought to determine whether indices of quadriceps muscle EMG activity in response to different modes of RET and activities of daily living (ADL), differed between 15 healthy younger (25 ± 3 years) and 15 older (70 ± 5 years) adults. On four separate days, participants completed a maximal voluntary contraction (MVC) of the knee extensors, followed by a 15 m walking task, stair climbing task (i.e. ADL) and lower-limb RET through body-weight squats (BW-RET) and seated knee extensions on a machine (MN-RET) or via elastic bands (EB-RET). Surface quadriceps electromyography (EMG) was measured throughout all tasks to provide indirect estimates of changes in muscle activity. RESULTS:MVC was significantly greater in young vs. older adults (Young: 256 ± 72 vs. Old: 137 ± 48 N·m, P < 0.001). EMG activity during all exercise tasks was significantly higher in older vs. younger adults when expressed relative to maximal EMG achieved during MVC (P < 0.01, for all). In addition, relative quadriceps muscle EMG activity was significantly greater in EB-RET (Young: 20.3 ± 8.7 vs. Old: 37.0 ± 10.7%) and MN-RET (Young: 22.9 ± 10.3, vs. Old: 37.8 ± 10.8%) compared with BW-RET (Young: 8.6 ± 2.9 vs. Old: 27.0 ± 9.3%), in young and older adults (P < 0.001). However, there was no significant difference in quadriceps EMG between EB-RET and MN-RET (P > 0.05). CONCLUSIONS:In conclusion, relative quadriceps muscle EMG activity was higher across a range of activities/exercise modes in older vs. younger adults. The similar quadriceps muscle EMG activity between EB-RET and MN-RET provides a platform for detailed investigation of the neuromuscular and muscle metabolic responses to such pragmatic forms of RET to strengthen the evidence-base for this mode of RET as a potential countermeasure to sarcopenia.
Project description:INTRODUCTION:Severe burns result in prolonged hypermetabolism and skeletal muscle catabolism. Rehabilitative exercise training (RET) programs improved muscle mass and strength in severely burned children. The combination of RET with ?-blockade or testosterone analogs showed improved exercise-induced benefits on body composition and muscle function. However, the effect of RET combined with multiple drug therapy on muscle mass, strength, cardiorespiratory fitness, and protein turnover are unknown. In this placebo-controlled randomized trial, we hypothesize that RET combined with oxandrolone and propranolol (Oxprop) will improve muscle mass and function and protein turnover in severely burned children compared with burned children undergoing the same RET with a placebo. METHODS:We studied 42 severely burned children (7-17 yr) with severe burns over 30% of the total body surface area. Patients were randomized to placebo (22 control) or to Oxprop (20) and began drug administration within 96 h of admission. All patients began RET at hospital discharge as part of their standardized care. Muscle strength (N·m), power (W), V?O2peak, body composition, and protein fractional synthetic rate and fractional breakdown rate were measured pre-RET (PRE) and post-RET (POST). RESULTS:Muscle strength and power, lean body mass, and V?O2peak increased with RET in both groups (P < 0.01). The increase in strength and power was significantly greater in Oxprop versus control (P < 0.01), and strength and power was greater in Oxprop over control POST (P < 0.05). Fractional synthetic rate was significantly higher in Oxprop than control POST (P < 0.01), resulting in improved protein net balance POST (P < 0.05). CONCLUSIONS:Rehabilitative exercise training improves body composition, muscle function, and cardiorespiratory fitness in children recovering from severe burns. Oxprop therapy augments RET-mediated improvements in muscle strength, power, and protein turnover.