Project description:Background. Polycomb Repressive Complex 2 (PRC2) is an essential regulator of gene expression that maintains genes in a repressed state by marking chromatin with trimethylated Histone H3 lysine 27 (H3K27me3). In Arabidopsis, loss of PRC2 function leads to pleiotropic effects on growth and development thought to be due to ectopic expression of seed and embryo-specific genes. While there is some understanding of the mechanisms by which specific genes are targeted by PRC2 in animal systems, it is still not clear how PRC2 is recruited to specific regions of plant genomes.Results. We used ChIP-seq to determine the genome-wide distribution of hemagglutinin (HA)-tagged FERTLIZATION INDEPENDENT ENDOSPERM (FIE-HA), the Extra Sex Combs homolog protein present in all Arabidopsis PRC2 complexes. We found that the FIE-HA binding sites co-locate with a subset of the H3K27me3 sites in the genome and the associated genes were more likely to be de-repressed in mutants of PRC2 components. The FIE-HA binding sites are enriched for three sequence motifs including a putative GAGA factor binding site that is also found in Drosophila Polycomb Response Elements (PREs).Conclusions. Our results suggest that PRC2 binding sites in plant genomes share some sequence features with Drosophila PREs. However, RNA was extracted from intermediate phenotype siFIE plants, clf-7 swn-28 and Col using Qiagen Plant RNeasy mini kit. For each sample, three pools of 10-12 plants were used. The siFIE plants were analysed for FIE mRNA by RT-qPCR; the maximum level of FIE mRNA was found to be 10% of wildtype.
Project description:Background. Polycomb Repressive Complex 2 (PRC2) is an essential regulator of gene expression that maintains genes in a repressed state by marking chromatin with trimethylated Histone H3 lysine 27 (H3K27me3). In Arabidopsis, loss of PRC2 function leads to pleiotropic effects on growth and development thought to be due to ectopic expression of seed and embryo-specific genes. While there is some understanding of the mechanisms by which specific genes are targeted by PRC2 in animal systems, it is still not clear how PRC2 is recruited to specific regions of plant genomes.Results. We used ChIP-seq to determine the genome-wide distribution of hemagglutinin (HA)-tagged FERTLIZATION INDEPENDENT ENDOSPERM (FIE-HA), the Extra Sex Combs homolog protein present in all Arabidopsis PRC2 complexes. We found that the FIE-HA binding sites co-locate with a subset of the H3K27me3 sites in the genome and the associated genes were more likely to be de-repressed in mutants of PRC2 components. The FIE-HA binding sites are enriched for three sequence motifs including a putative GAGA factor binding site that is also found in Drosophila Polycomb Response Elements (PREs).Conclusions. Our results suggest that PRC2 binding sites in plant genomes share some sequence features with Drosophila PREs. However,
Project description:Interphase chromatin is organized into topologically associating domains (TADs). Within TADs, chromatin looping interactions are formed between DNA regulatory elements, but their functional importance for the establishment of the 3D genome organization and gene regulation during development is unclear. Using high-resolution Hi-C experiments, we analyze higher order 3D chromatin organization during Drosophila embryogenesis and identify active and repressive chromatin loops that are established with different kinetics and depend on distinct factors: Zelda-dependent active loops are formed before the midblastula transition between transcribed genes over long distances. Repressive loops within polycomb domains are formed after the midblastula transition between polycomb response elements by the action of GAGA factor and polycomb proteins. Perturbation of PRE function by CRISPR/Cas9 genome engineering affects polycomb domain formation and destabilizes polycomb-mediated silencing. Preventing loop formation without removal of polycomb components also decreases silencing efficiency, suggesting that chromatin architecture can play instructive roles in gene regulation during development.
Project description:Heterochromatin in the eukaryotic genome is rigorously controlled by the concerted action of protein factors and RNAs. Here, we investigate the RNA binding function of ATRX, a chromatin remodeler with roles in silencing of repetitive regions of the genome and in recruitment of the polycomb repressive complex 2 (PRC2). We identify ATRX RNA binding regions (RBRs) and discover that the major ATRX RBR lies within the N-terminal region of the protein, distinct from its PHD and helicase domains. Deletion of this ATRX RBR (ATRXRBR) compromises ATRX interactions with RNAs in vitro and in vivo and alters its chromatin binding properties. Genome-wide studies reveal that loss of RNA interactions results in a redistribution of ATRX on chromatin. Finally, our studies identify a role for ATRX-RNA interactions in regulating PRC2 localization to a subset of polycomb target genes.
Project description:DNA sequence is a major determinant of the binding specificity of transcription factors (TFs) for their genomic targets. However, eukaryotic cells often express, at the same time, TFs with highly similar DNA binding motifs but distinct in vivo targets. Currently, it is not well understood how TFs with seemingly identical DNA motifs achieve unique specificities in vivo. Here, we used custom protein binding microarrays to analyze TF specificity for putative binding sites in their genomic sequence context. Using yeast TFs Cbf1 and Tye7 as our case study, we found that binding sites of these bHLH TFs (i.e., E-boxes) are bound differently in vitro and in vivo, depending on their genomic context. Computational analyses suggest that nucleotides outside E-box binding sites contribute to specificity by influencing the 3D structure of DNA binding sites. Thus, local shape of target sites might play a widespread role in achieving regulatory specificity within TF families. Three protein binding microarray (PBM) experiments of Saccharomyces cerevisiae transcription factors were performed. Briefly, the PBMs involved binding GST-tagged yeast transcription factors Cbf1 and Tye7 to double-stranded 44K Agilent microarrays in order to determine their binding specificity for putative DNA binding sites in native genomic context. Briefly, we represent three categories of 30-bp genomic sequences: 1) ChIP-chip bound probes, 2) ChIP-chip unbound probes, and 3) negative control probes. ChIP-chip bound probes corresponded to genomic regions bound in vivo by Cbf1 or Tye7 (ChIP-chip P < 0.005 in rich medium (YPD) (Harbison et al., Nature 2004, PMID 15343339)) contained at least two consecutive 8-mers with universal PBM E-score > 0.35 (Zhu et al., Genome Research 2009, PMID 19158363). All putative binding sites occurred at the same position within the probes on the array. M-bM-^@M-^\ChIP-chip unboundM-bM-^@M-^] probes corresponded to genomic regions with ChIP-chip P > 0.5 and at least two consecutive 8-mers at a more stringent universal PBM E-score threshold of 0.4. Negative control probes corresponded to S. cerevisiae intergenic regions with a maximum 8-mer E-score < 0.3. We also designed probes that contain, within constant flanking regions, all 10-bp sequences that occur within the M-bM-^@M-^\ChIP-chip boundM-bM-^@M-^] probes and contain the E-box CACGTG, but are flanked by synthetic rather than native genomic sequence. Each DNA sequence represented on the array is present in 4 replicate spots. We report the PBM signal intensity for each spot. The PBM protocol is described in Berger et al., Nature Biotechnology 2006 (PMID 16998473).
Project description:the nature of the interaction between RNA and Polycomb repressive complex 2 (PRC2) has been an area of intensive investigation. Although PRC2 is now established as a bona fide RNA-binding protein, specific motifs have not been fully elucidated, nor has the association of PRC2-RNA complexes with active genes been reconciled. Here we employ denaturing CLIP to identify RNA motifs demonstrating high-affinity binding to PRC2 (Kd 11-80 nM). Mutating the motifs diminishes binding affinity in vitro and attenuates PRC2’s repressive function in vivo. A large fraction of interactions occurs at promoter-proximal regions and associates with POL-II pausing. Furthermore, although PRC2-associated nascent transcripts are highly expressed, ablating PRC2 further increases their expression. Thus, PRC2-RNA interactions are rheostats that operate at the level of transcription elongation to fine-tune gene activity, explaining why they frequently occur within active genes. PRC2-RNA interactions also impact expression of neighboring genes, supporting the classical model that RNA targets PRC2 to gene in cis. Our study supports a model in which RNA specifically targets PRC2 for two repressive functions — (i) control of POL-II pausing, and (ii) marking chromatin with H3K27me3.
Project description:GWAS have discovered thousands of genomic loci that are associated with disease risk and quantitative traits, but most of the variants responsible for risk remain uncharacterized. The vast majority of GWAS-identified loci contain non-coding SNPs and defining molecular mechanism of risk is challenging. Many non-coding causal SNPs are hypothesized to alter Transcription Factor (TF) binding sites as the mechanism by which they affect organismal phenotypes. We employed an integrative genomics approach to identify candidate TF binding motifs that confer breast cancer-specific phenotypes identified by GWAS. We performed de novo motif analysis of regulatory elements, analyzed evolutionary conservation of identified motifs, and assayed TF footprinting data to identify sequence elements that recruit TFs and maintain chromatin landscape in breast cancer-relevant tissue and cell lines. Regulatory elements for MCF10A were mapped with ATAC-seq.We identified top candidate causal SNPs that are predicted to alter TF binding, within breast cancer-relevant regulatory regions, and in strong linkage disequilibrium with the GWAS SNPs. This integrative analysis pipeline is a general framework to identify candidate causal variants within regulatory regions and TF binding sites that confer phenotypic variation and disease risk.
Project description:The transcription factor GATA-1 is required for terminal erythroid maturation and functions as an activator or repressor depending on gene context. Yet its in vivo site selectivity and ability to distinguish between activated versus repressed genes remain incompletely understood. In this study, we performed GATA-1 ChIP-seq in erythroid cells and compared it to GATA-1-induced gene expression changes. Bound and differentially expressed genes contain a greater number of GATA-binding motifs, a higher frequency of palindromic GATA sites, and closer occupancy to the transcriptional start site versus nondifferentially expressed genes. Moreover, we show that the transcription factor Zbtb7a occupies GATA-1-bound regions of some direct GATA-1 target genes, that the presence of SCL/TAL1 helps distinguish transcriptional activation versus repression, and that polycomb repressive complex 2 (PRC2) is involved in epigenetic silencing of a subset of GATA-1-repressed genes. These data provide insights into GATA-1-mediated gene regulation in vivo. Keywords: Gene regulation Examination of GATA-1 occupancy in MEL cell line.
Project description:MIR139 is a critical tumor suppressor and commonly silenced in human cancer, including acute myeloid leukemia (AML). Here, we found that depletion of identified MIR139 targets affects AML outgrowth. We unraveled the mechanism of MIR139 gene inactivation in AML expressing the Mixed-Lineage Leukemia (MLL)-AF9 oncogene. Epigenetic analyses revealed two well-conserved putative enhancer regions in close proximity of transcriptional start sites (TSS) of MIR139. These regions were silenced by the Polycomb-Repressive Complex-2 (PRC2) downstream of MLL-AF9. Genomic deletion of these regions abolished MIR139 transcriptional regulation in normal and oncogenic conditions. Genome-wide knockout screens revealed the transcriptional pausing factor of RNA Polymerase-II, POLR2M, as a critical MIR139-silencing factor. Furthermore, direct POLR2M binding to the MIR139 TSS induced paused transcription, which was abrogated upon PRC2 inhibition. We present evidence for an oncogenic POLR2M-mediated MIR139 silencing mechanism, downstream of MLL-AF9 and PRC2. Together, our findings highlight the importance of POLR2M-mediated paused transcription in AML.