Project description:The advent of the genome sequences of Arachis duranensis and Arachis ipaensis has ushered in a new era for peanut genomics. With the goal of producing a gene atlas for cultivated peanut (Arachis hypogaea), 22 different tissue types and ontogenies that represent the full development of peanut were sequenced, including a complete reproductive series from flower to peg elongation and peg tip immersion in the soil to fully mature seed. Using a genome-guided assembly pipeline, a homeolog-specific transcriptome assembly for Arachis hypogaea was assembled and its accuracy was validated. The assembly was used to annotate 21 developmental co-expression networks as tools for gene discovery. Using a set of 8816 putative homeologous gene pairs, homeolog expression bias was documented, and although bias was mostly balanced, there were striking differences in expression bias in a tissue-specific context. Over 9000 alterative splicing events and over 6000 non-coding RNAs were further identified and profiled in a developmental context. Together, this work represents a major new resource for cultivated peanut and will be integrated into peanutbase.org as an available resource for all peanut researchers.
Project description:RWP-RK proteins are important factors involved in nitrate response and gametophyte development in plants, and the functions of RWP-RK proteins have been analyzed in many species. However, the characterization of peanut RWP-RK proteins is limited. In this study, we identified 16, 19, and 32 RWP-RK members from Arachis duranensis, Arachis ipaensis, and Arachis hypogaea, respectively, and investigated their evolution relationships. The RWP-RK proteins were classified into two groups, RWP-RK domain proteins and NODULE-INCEPTION-like proteins. Chromosomal distributions, gene structures, and conserved motifs of RWP-RK genes were compared among wild and cultivated peanuts. In addition, we identified 12 orthologous gene pairs from the two wild peanut species, 13 from A. duranensis and A. hypogaea, and 13 from A. ipaensis and A. hypogaea. One, one, and seventeen duplicated gene pairs were identified within the A. duranensis, A. ipaensis, and A. hypogaea genomes, respectively. Moreover, different numbers of cis-acting elements in the RWP-RK promoters were found in wild and cultivated species (87 in A. duranensis, 89 in A. ipaensis, and 92 in A. hypogaea), and as a result, many RWP-RK genes showed distinct expression patterns in different tissues. Our study will provide useful information for further functional and evolutionary analysis of the RWP-RK genes.
Project description:Growth-regulating factors (GRFs) are plant-specific transcription factors that perform important functions in plant growth and development. Herein, we identified and characterised 24 AhGRF genes in peanut (Arachis hypogaea). AhGRF family genes were divided into six classes with OLQ and WRC domains. Transcriptome expression profile showed that more AhGRF genes, such as AhGRF5a gene, were at higher expression during pod development in Arachis monticola than cultivated species, especially at the pod rapid-expansion stage. AhGRF5a and AhGRF5b genes expressed at higher levels in pods than roots, leaves and stems tissues, existing in the difference between Arachis monticola and H8107. Exogenous GA3 application can activate AhGRF5a and AhGRF5b genes and H8107 line showed more positive response than Arachis monticola species. These results imply that these two AhGRF genes may be active during the peanut pod development.
Project description:The Goal of this study is to develop NGS derived Arachis hypogaea root-nodule symbiotic Transcriptome Profile (RNAseq). Overall design: Differential Gene Expression profile during the progression of symbiosis is generated by deep Sequencing,in triplicate using Illumina HiSeq 2000 platform
Project description:BACKGROUND:Long noncoding RNAs (lncRNAs), which are typically >?200?nt in length, are involved in numerous biological processes. Studies on lncRNAs in the cultivated peanut (Arachis hypogaea L.) largely remain unknown. RESULTS:A genome-wide scan of the peanut (Arachis hypogaea L.) transcriptome identified 1442 lncRNAs, which were encoded by loci distributed over every chromosome. Long intergenic noncoding RNAs accounted for 85.58% of these lncRNAs. Additionally, 189 lncRNAs were differentially abundant in the root, leaf, or seed. Generally, lncRNAs showed lower expression levels, tighter tissue-specific expression, and less splicing than mRNAs. Approximately 44.17% of the lncRNAs with an exon/intron structure were alternatively spliced; this rate was slightly lower than the splicing rate of mRNA. Transcription at the start site event was the alternative splicing (AS) event with the highest frequency (28.05%) in peanut lncRNAs, whereas the occurrence rate (30.19%) of intron retention event was the highest in mRNAs. AS changed the target gene profiles of lncRNAs and increased the diversity and flexibility of lncRNAs, which may be important for lncRNAs to execute their functions. Additionally, a substantial number of the peanut AS isoforms generated from protein-encoding genes appeared to be noncoding because they were truncated transcripts; such isoforms can be legitimately regarded as a class of lncRNAs. The predicted target genes of the lncRNAs were involved in a wide range of biological processes. Furthermore, expression pattern of several selected lncRNAs and their target genes were examined under salt stress, results showed that all of them could respond to salt stress in different manners. CONCLUSIONS:This study provided a resource of candidate lncRNAs and expression patterns across tissues, and whether these lncRNAs are functional will be further investigated in our subsequent experiments.
Project description:WRKY transcription factors play crucial roles in regulation mechanism leading to the adaption of plants to the complex environment. In this study, AhWRKY family was comprehensively analyzed using bioinformatic approaches in combination with transcriptome sequencing data of the drought-tolerant peanut variety 'L422'. A total of 158 AhWRKY genes were identified and named according to their distribution on the chromosomes. Based on the structural features and phylogenetic analysis of AhWRKY proteins, the AhWRKY family members were classified into three (3) groups, of which group II included five (5) subgroups. Results of structure and conserved motifs analysis for the AhWRKY genes confirmed the accuracy of the clustering analysis. In addition, 12 tandem and 136 segmental duplication genes were identified. The results indicated that segmental duplication events were the main driving force in the evolution of AhWRKY family. Collinearity analysis found that 32 gene pairs existed between Arachis hypogaea and two diploid wild ancestors (Arachis duranensis and Arachis ipaensis), which provided valuable clues for phylogenetic characteristics of AhWRKY family. Furthermore, 19 stress-related cis-acting elements were found in the promoter regions. During the study of gene expression level of AhWRKY family members in response to drought stress, 73 differentially expressed AhWRKY genes were obtained to have been influenced by drought stress. These results provide fundamental insights for further study of WRKY genes in peanut drought resistance.
Project description:ABSRACT:Peanut (Arachis hypogaea L.) is an important oilseed and cash crop worldwide. Wild Arachis spp. are potental sources of novel genes for the genetic improvement of cultivated peanut. Understanding the genetic relationships with cultivated peanut is important for the efficient use of wild species in breeding programmes. However, for this genus, only a few genetic resources have been explored so far. In this study, new chloroplast genomic resources have been developed for the genus Arachis based on whole chloroplast genomes from seven species that were sequenced using next-generation sequencing technologies. The chloroplast genomes ranged in length from 156,275 to 156,395?bp, and their gene contents, gene orders, and GC contents were similar to those for other Fabaceae species. Comparative analyses among the seven chloroplast genomes revealed 643 variable sites that included 212 singletons and 431 parsimony-informative sites. We also identified 101 SSR loci and 85 indel mutation events. Thirty-seven SSR loci were found to be polymorphic by in silico comparative analyses. Eleven highly divergent DNA regions, suitable for phylogenetic and species identification, were detected in the seven chloroplast genomes. A molecular phylogeny based on the complete chloroplast genome sequences provided the best resolution of the seven Arachis species.
Project description:Arachis hypogaea roots are used as traditional Chinese medicine to treat different ailments, and the present study involves the exploration and comparison of phenolic profile and antioxidant activities (ABTS+ and DPPH assay) of A. hypogaea root extract in different solvents. 70% aqueous acetone and 70% aqueous ethanol were proved to be the best solvents to recover total phenolic compounds, with a yield of 42.59?±?1.96 and 41.34?±?0.92?mg/g dry weight of extract, respectively. ABTS+ radical scavenging activity was the highest in 70% aqueous ethanol, while the absolute methanol extract showed the highest DPPH radical scavenging activity (29.50?±?2.19??g/mL). Furthermore, phytochemical profiling of 70% acetone extract of A. hypogaea roots was performed by LC-ESI-TOF-MS analysis which in turn indicated the presence of diverse compounds in the A. hypogaea root extract, namely, quinones, stilbenoids, and flavones and flavonoid glucosides.