Project description:Setaria viridis (green foxtail) is an important model system for improving cereal crops due to its diploid genome, ease of cultivation, and use of C4 photosynthesis. The S. viridis accession ME034V is exceptionally transformable, but the lack of a sequenced genome for this accession has limited its utility. We present a 397 Mb highly contiguous de novo assembly of ME034V using ultra-long nanopore sequencing technology (read N50 = 41kb). We estimate that this genome is largely complete based on our updated k-mer based genome size estimate of 401 Mb for S. viridis Genome annotation identified 37,908 protein-coding genes and >300k repetitive elements comprising 46% of the genome. We compared the ME034V assembly with two other previously sequenced Setaria genomes as well as to a diversity panel of 235 S. viridis accessions. We found the genome assemblies to be largely syntenic, but numerous unique polymorphic structural variants were discovered. Several ME034V deletions may be associated with recent retrotransposition of copia and gypsy LTR repeat families, as evidenced by their low genotype frequencies in the sampled population. Lastly, we performed a phylogenomic analysis to identify gene families that have expanded in Setaria, including those involved in specialized metabolism and plant defense response. The high continuity of the ME034V genome assembly validates the utility of ultra-long DNA sequencing to improve genetic resources for emerging model organisms. Structural variation present in Setaria illustrates the importance of obtaining the proper genome reference for genetic experiments. Thus, we anticipate that the ME034V genome will be of significant utility for the Setaria research community.
Project description:Parallel Analysis of RNA Ends (PARE) sequencing reads were generated to validate putative microRNAs and identify cleavage sites in Sorghum bicolor and Setaria viridis. Overall design: For Sorghum bicolor, a variety of conditions were used to generate total RNA, including leaf and three stages of anther development. For Setaria viridis, single replicates of leaf, panicle, and two stages of spikelets were sampled.
Project description:An efficient method for crossing green foxtail (Setaria viridis) is currently lacking. S. viridis is considered to be the new model plant for the study of C4 system in monocots and so an effective crossing protocol is urgently needed. S. viridis is a small grass with C4-NADP (ME) type of photosynthesis and has the advantage of having small genome of about 515 Mb, small plant stature, short life cycle, multiple tillers, and profuse seed set, and hence is an ideal model species for research. The objectives of this project were to develop efficient methods of emasculation and pollination, and to speed up generation advancement. We assessed the response of S. viridis flowers to hot water treatment (48°C) and to different concentrations of gibberellic acid, abscisic acid, maleic hydrazide (MH), and kinetin. We found that 500 ?M of MH was effective in the emasculation of S. viridis, whilst still retaining the receptivity of the stigma to pollination. We also report effective ways to accelerate the breeding cycle of S. viridis for research through the germination of mature as well as immature seeds in optimized culture media. We believe these findings will be of great interest to researchers using Setaria.
Project description:Wild and weedy relatives of domesticated crops harbor genetic variants that can advance agricultural biotechnology. Here we provide a genome resource for the wild plant green millet (Setaria viridis), a model species for studies of C4 grasses, and use the resource to probe domestication genes in the close crop relative foxtail millet (Setaria italica). We produced a platinum-quality genome assembly of S. viridis and de novo assemblies for 598 wild accessions and exploited these assemblies to identify loci underlying three traits: response to climate, a 'loss of shattering' trait that permits mechanical harvest and leaf angle, a predictor of yield in many grass crops. With CRISPR-Cas9 genome editing, we validated Less Shattering1 (SvLes1) as a gene whose product controls seed shattering. In S. italica, this gene was rendered nonfunctional by a retrotransposon insertion in the domesticated loss-of-shattering allele SiLes1-TE (transposable element). This resource will enhance the utility of S. viridis for dissection of complex traits and biotechnological improvement of panicoid crops.
Project description:Setaria viridis (green foxtail) has been identified as a potential experimental model system to genetically and molecularly characterise the C4 monocotyledonous grasses due to its small physical size, short generation time and prolific seed production, together with a sequenced and annotated genome. Setaria viridis is the wild ancestor of the cropping species, foxtail millet (Setaria italica), with both Setaria species sharing a close evolutionary relationship with the agronomically important species, maize, sorghum, and sugarcane, as well as the bioenergy feedstocks, switchgrass, and Miscanthus. However, an efficient and reproducible transformation protocol is required to further advance the use of S. viridis to study the molecular genetics of C4 monocotyledonous grasses. An efficient and reproducible protocol was established for Agrobacterium tumefaciens-mediated transformation of S. viridis (Accession A10) regenerable callus material derived from mature seeds, a protocol that returned an average transformation efficiency of 6.3%. The efficiency of this protocol was the result of the: (i) use of mature embryo derived callus material; (ii) age of the seed used to induce callus formation; (iii) composition of the callus induction media, including the addition of the ethylene inhibitor, silver nitrate; (iv) use of a co-cultivation approach, and; (v) concentration of the selective agent. Our protocol furthers the use of S. viridis as an experimental model system to study the molecular genetics of C4 monocotyledonous grasses for the potential future development of improved C4 cropping species.
Project description:In many plant species, the time of day at which flowers open to permit pollination is tightly regulated. Proper time of flower opening, or Time of Day of Anther Appearance (TAA), may coordinate flowering opening with pollinator activity or may shift temperature sensitive developmental processes to cooler times of the day. The genetic mechanisms that regulate the timing of this process in cereal crops are unknown. To address this knowledge gap, it is necessary to establish a monocot model system that exhibits variation in TAA. Here, we examine the suitability of Setaria viridis, the model for C4 photosynthesis, for such a role. We developed an imaging system to monitor the temporal regulation of growth, flower opening time, and other physiological characteristics in Setaria. This system enabled us to compare Setaria varieties Ames 32254, Ames 32276, and PI 669942 variation in growth and daily flower opening time. We observed that TAA occurs primarily at night in these three Setaria accessions. However, significant variation between the accessions was observed for both the ratio of flowers that open in the day vs. night and the specific time of day where the rate is maximal. Characterizing this physiological variation is a requisite step toward uncovering the molecular mechanisms regulating TAA. Leveraging the regulation of TAA could provide researchers with a genetic tool to improve crop productivity in new environments.
Project description:Quantitative real-time polymerase chain reaction (RT-qPCR) is the key platform for the quantitative analysis of gene expression in a wide range of experimental systems and conditions. However, the accuracy and reproducibility of gene expression quantification via RT-qPCR is entirely dependent on the identification of reliable reference genes for data normalisation. Green foxtail (Setaria viridis) has recently been proposed as a potential experimental model for the study of C4 photosynthesis and is closely related to many economically important crop species of the Panicoideae subfamily of grasses, including Zea mays (maize), Sorghum bicolor (sorghum) and Sacchurum officinarum (sugarcane). Setaria viridis (Accession 10) possesses a number of key traits as an experimental model, namely; (i) a small sized, sequenced and well annotated genome; (ii) short stature and generation time; (iii) prolific seed production, and; (iv) is amendable to Agrobacterium tumefaciens-mediated transformation. There is currently however, a lack of reference gene expression information for Setaria viridis (S. viridis). We therefore aimed to identify a cohort of suitable S. viridis reference genes for accurate and reliable normalisation of S. viridis RT-qPCR expression data.Eleven putative candidate reference genes were identified and examined across thirteen different S. viridis tissues. Of these, the geNorm and NormFinder analysis software identified SERINE/THERONINE-PROTEIN PHOSPHATASE 2A (PP2A), 5'-ADENYLYLSULFATE REDUCTASE 6 (ASPR6) and DUAL SPECIFICITY PHOSPHATASE (DUSP) as the most suitable combination of reference genes for the accurate and reliable normalisation of S. viridis RT-qPCR expression data. To demonstrate the suitability of the three selected reference genes, PP2A, ASPR6 and DUSP, were used to normalise the expression of CINNAMYL ALCOHOL DEHYDROGENASE (CAD) genes across the same tissues.This approach readily demonstrated the suitably of the three selected reference genes for the accurate and reliable normalisation of S. viridis RT-qPCR expression data. Further, the work reported here forms a highly useful platform for future gene expression quantification in S. viridis and can also be potentially directly translatable to other closely related and agronomically important C4 crop species.
Project description:Setaria viridis (green foxtail) is an important model plant for the study of C4 photosynthesis in panicoid grasses, and is fast emerging as a system of choice for the study of plant development, domestication, abiotic stress responses and evolution. Basic research findings in Setaria are expected to advance research not only in this species and its close relative S. italica (foxtail millet), but also in other panicoid grasses, many of which are important food or bioenergy crops. Here we report on the standardization of multiple growth and development assays for S. viridis under controlled conditions, and in response to several phytohormones and abiotic stresses. We optimized these assays at three different stages of the plant's life: seed germination and post-germination growth using agar plate-based assays, early seedling growth and development using germination pouch-based assays, and adult plant growth and development under environmentally controlled growth chambers and greenhouses. These assays will be useful for the community to perform large scale phenotyping analyses, mutant screens, comparative physiological analysis, and functional characterization of novel genes of Setaria or other related agricultural crops. Precise description of various growth conditions, effective treatment conditions and description of the resultant phenotypes will help expand the use of S. viridis as an effective model system.