Project description:Bone marrow-derived multipotent stromal cells (BM-MSCs) exhibit therapuetically valuable properties, including the capacity to differentiate into skeletal tissues and modulate immune system activity. These properties depend on proper regulation of dynamic gene expression in response to environmental and developmental stimuli. This study used chromatin immunoprecipitation (ChIP) coupled with human promoter tiling microarray analysis (ChIP-on-chip) to profile histones H3K4me3 and H3K27me3 at promoters genome-wide. The goal of the study was to identify gene promoters marked by H3K27me3 and H3K4me3 in BM-MSCs. ChIP-on-chip performed with antibodies to H3K4me3 and H3K27me3 on BM-MSCs from 3 different donors (labeled 1632, 167696, and 8F3560) and with technical replicates.
Project description:Bone marrow-derived multipotent stromal cells (BM-MSCs) exhibit therapuetically valuable properties, including the capacity to differentiate into skeletal tissues and modulate immune system activity. These properties depend on proper regulation of dynamic gene expression in response to environmental and developmental stimuli. This study used chromatin immunoprecipitation (ChIP) coupled with human promoter tiling microarray analysis (ChIP-on-chip) to profile histones H3K4me3 and H3K27me3 at promoters genome-wide. The goal of the study was to identify gene promoters marked by H3K27me3 and H3K4me3 in BM-MSCs. ChIP-on-chip performed with antibodies to H3K4me3 and H3K27me3 on BM-MSCs from 3 different donors (labeled 1632, 167696, and 8F3560) and with technical replicates.
Project description:This SuperSeries is composed of the following subset Series: GSE27900: Gene expression analysis of mesenchymal stem cells (MSC), osteoblasts and the U2OS (osteosarcoma) cell line GSE35573: ChIP-seq analysis of H3K4Me3- and H3K27Me3-marked chromatin in mesenchymal stem cells (MSCs), osteoblasts derived from MSCs and the osteosarcoma cell line U2OS Refer to individual Series
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs. One-condition experment, gene expression of 3A6
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression. Two-condition experiment, Normoxic MSCs vs. Hypoxic MSCs.
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs. Two-condition experiment, KP MSCs vs. 3A6 MSCs.
Project description:Epigenetic changes commonly occur in hepatocellular carcinoma (HCC) and are associated with aberrant gene expression. Recently, we demonstrated the pivotal role of abnormal H3K4me3 methylation, which is catalyzed by the menin/MLL, a TrxG family, in HCC development. Meanwhile, there is clear evidence that increasing global levels of H3K27me3 are activated in human primary HCC. To further elucidate the functional relatedness of the active H3K4me3 and repressive H3K27me3 histone remodeling in HCC, we performed H3K4me3 and H3K27me3 ChIP-on-chip screen using three HCC specimens and their adjacent tissues. Comparison of ChIP-on-chip results between tumor(C) and adjacent tissues(N) from three HCC specimens with H3K4me3
Project description:Epigenetic changes commonly occur in hepatocellular carcinoma (HCC) and are associated with aberrant gene expression. Recently, we demonstrated the pivotal role of abnormal H3K4me3 methylation, which is catalyzed by the menin/MLL, a TrxG family, in HCC development. Meanwhile, there is clear evidence that increasing global levels of H3K27me3 are activated in human primary HCC. To further elucidate the functional relatedness of the repressive H3K27me3 and active H3K4me3 histone remodeling in HCC, we performed H3K27me3 and H3K4me3 ChIP-on-chip screen using three HCC specimens and their adjacent tissues. Comparison of ChIP-on-chip results between tumor(C) and adjacent tissues(N) from three HCC specimens with H3K27me3
Project description:To understand the epigenomic foundation of naive pluripotency, we implement a quantitative multiplexed chromatin immunoprecipitation sequencing (ChIP-seq) method comparing mouse embryonic stem cells (ESCs) grown in 2i versus 2i/serum and serum conditions. MINUTE-ChIP has a large linear dynamic range for accurately quantifying relative differences in genome-wide histone modification patterns across multiple pooled samples. We find compelling evidence for a broad H3 lysine 27 trimethylation (H3K27me3) hypermethylation of the genome, while bivalent promoters stably retain high H3K27me3 levels in 2i. We show that DNA hypomethylation, as observed in 2i, is a contributor to genome-wide gain of H3K27me3, while active demethylation by JMJD3/UTX counteracts further accumulation of H3K27me3. In parallel, we find hypomethylation of H3 lysine 4 trimethylation (H3K4me3), particularly at bivalent promoters, to be a characteristic of the 2i ground state. Serum stimulates H3K4me3 independent of GSK-3b and ERK signaling, suggesting that low H3K4me3 and high H3K27me3 levels at bivalent promoters are a product of two independent mechanisms that safeguard naive pluripotency.
Project description:It is now well established that bone marrow (BM) constitutes a microenvironment required for differentiation. Bone marrow mesenchymal stromal cells (BM-MSCs) strongly support MM cell growth, by producing a high level of Interleukin-6 (IL-6), a major MM cell growth factor. BM-MSCs also support osteoclastogenesis and angiogenesis. Previous studies have suggested that the direct (VLA-4, VCAM-1, CD44, VLA-5, LFA-1, syndecan-1,M-bM-^@M-&) and indirect interactions (soluble factors) between MM plasma cells and BM-MSCs result in constitutive abnormalities in BM-MSCs. In particular, MM BM-MSCs express less CD106 and fibronectin and more DKK1, IL-1M-NM-2 and TNF-M-NM-1 as compared with normal BM-MSCs. In order to gain a global view of the differences between BM-MSCs from MM patients and healthy donors, we used gene expression profiling to identify genes associated to the transformation of MM BM-MSCs. BM-MSCs were isolated from 3 healthy donors and 4 untreated multiple myeloma patients. Total RNA from BM-MSCs was exctracted and hybridyzed on Affymetrix GeneChipM-BM-. Human Genome U133 Plus 2.0 Array. Amplification, hybridization and scanning were done according to standard Affymetrix protocols (www.affymetrix.com). CEL files were normalized with RMA method.