Project description:Complete genome sequence of Xanthomonas arboricola pv. juglandis CPBF 427 isolated from walnut buds. The assembly followed an hybrid approach with MinION and Illumina reads.
Project description:Here, we report the complete genome sequence of Xanthomonas arboricola pv. juglandis 417, a copper-resistant strain isolated from a blighted walnut fruit (Juglans regia L. cv. Chandler). The genome consists of a single chromosome (5,218 kb).
Project description:Here, we report the complete genome sequence of Xanthomonas arboricola pv. juglandis DW3F3, a strong pathogenic strain isolated from blighted walnut immature fruit (Juglans regia L. cv. Qingxiang). The genome consists of a single chromosome (5,144 kb).
Project description:To detect Xanthomonas arboricola pv. pruni, a loop-mediated isothermal amplification (LAMP) detection method were developed. The LAMP assay was designed to test crude plant tissue without pre-extraction, or heating incubation, and without advanced analysis equipment. The LAMP primers were designed by targeting an ABC transporter ATP-binding protein, this primer set was tested using the genomic DNA of Xanthomonas and non-Xanthomonas strains, and a ladder product was generated from the genomic DNA of X. arboricola pv. pruni strain but not from 12 other Xanthomonas species strains and 6 strains of other genera. The LAMP conditions were checked with the healthy leaves of 31 peach varieties, and no reaction was detected using either the peach leaves or the peach DNA as a template. Furthermore, the high diagnostic accuracy of the LAMP method was confirmed with 13 X. arboricola pv. pruni strains isolated from various regions in Korea, with all samples exhibiting a positive reaction in LAMP assays. In particular, the LAMP method successfully detected the pathogen in diseased peach leaves and fruit in the field, and the LAMP conditions were proven to be a reliable diagnostic method for the specific detection and identification of X. arboricola pv. pruni in peach orchards.
Project description:Here, we report the draft genome sequence of Xanthomonas arboricola pv. juglandis J303, isolated from infected walnut trees in southern Chile. The size of the genome is 5,066,424 bp with a G+C content of 65.4%. X. arboricola pv. juglandis J303 has several genes related to virulence, antibiotic resistance, and copper resistance.
Project description:BACKGROUND:Xanthomonas arboricola pv. pruni (Xap) causes bacterial spot of stone fruits and almond, an important disease that may reduce the yield and vigour of the trees, as well as the marketability of affected fruits. Xap lies within the Xanthomonas genus, which has been intensively studied because of its strain specialization and host range complexity. Here, we summarize the recent advances in our understanding of the complexities of Xap, including studies of the molecular features that result after comparative phenotypic and genomic analyses, in order to obtain a clearer overview of the bacterial behaviour and infection mechanism in the context of the X. arboricola species. TAXONOMIC STATUS:Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Order Xanthomonadales; Family Xanthomonadaceae; Genus Xanthomonas; Species X. arboricola; Pathovar pruni. HOST RANGE AND SYMPTOMS:Xap infects most Prunus species, including apricot, peach, nectarine, plum and almond, and occasionally cherry. Symptoms are found on leaves, fruits, twigs and branches or trunks. In severe infections, defoliation and fruit dropping may occur. DISTRIBUTION:Bacterial spot of stone fruits and almond is worldwide in distribution, with Xap being isolated in Africa, North and South America, Asia, Europe and Oceania. It is a common disease in geographical areas in which stone fruits and almonds are grown. Xap is listed as a quarantine organism in several areas of the world. GENOME:The genomes of six isolates from Xap have been publicly released. The genome consists of a single chromosome of around 5 000 000 bp with 65 mol% GC content and an extrachromosomal plasmid element of around 41 000 bp with 62 mol% GC content. Genomic comparative studies in X. arboricola have allowed the identification of putative virulence components associated with the infection process of bacterial spot of stone fruits and almond. DISEASE CONTROL:Management of bacterial spot of stone fruits and almond is based on an integrated approach that comprises essential measures to avoid Xap introduction in a production zone, as well as the use of tolerant or resistant plant material and chemical treatments, mainly based on copper compounds. Management programmes also include the use of appropriate cultivation practices when the disease is already established. Finally, for the effective control of the disease, appropriate detection and characterization methods are needed for use in symptomatic or asymptomatic samples as a first approach for pathogen exclusion. USEFUL WEBSITES: https://gd.eppo.int/taxon/XANTPR; http://www.cost.eu/COST_Actions/ca/CA16107; http://www.xanthomonas.org.
Project description:Xanthomonas arboricola pv. pruni is the causal agent of bacterial spot disease of stone fruits, a quarantinable pathogen in several areas worldwide, including the European Union. In order to develop efficient control methods for this disease, it is necessary to improve the understanding of the key determinants associated with host restriction, colonization and the development of pathogenesis. After an initial characterization, by multilocus sequence analysis, of 15 strains of X. arboricola isolated from Prunus, one strain did not group into the pathovar pruni or into other pathovars of this species and therefore it was identified and defined as a X. arboricola pv. pruni look-a-like. This non-pathogenic strain and two typical strains of X. arboricola pv. pruni were selected for a whole genome and phenotype comparative analysis in features associated with the pathogenesis process in Xanthomonas. Comparative analysis among these bacterial strains isolated from Prunus spp. and the inclusion of 15 publicly available genome sequences from other pathogenic and non-pathogenic strains of X. arboricola revealed variations in the phenotype associated with variations in the profiles of TonB-dependent transporters, sensors of the two-component regulatory system, methyl accepting chemotaxis proteins, components of the flagella and the type IV pilus, as well as in the repertoire of cell-wall degrading enzymes and the components of the type III secretion system and related effectors. These variations provide a global overview of those mechanisms that could be associated with the development of bacterial spot disease. Additionally, it pointed out some features that might influence the host specificity and the variable virulence observed in X. arboricola.
Project description:Xanthomonas arboricola is a plant-associated bacterial species that causes diseases on several plant hosts. One of the most virulent pathovars within this species is X. arboricola pv. pruni (Xap), the causal agent of bacterial spot disease of stone fruit trees and almond. Recently, a non-virulent Xap-look-a-like strain isolated from Prunus was characterized and its genome compared to pathogenic strains of Xap, revealing differences in the profile of virulence factors, such as the genes related to the type III secretion system (T3SS) and type III effectors (T3Es). The existence of this atypical strain arouses several questions associated with the abundance, the pathogenicity, and the evolutionary context of X. arboricola on Prunus hosts. After an initial characterization of a collection of Xanthomonas strains isolated from Prunus bacterial spot outbreaks in Spain during the past decade, six Xap-look-a-like strains, that did not clustered with the pathogenic strains of Xap according to a multi locus sequence analysis, were identified. Pathogenicity of these strains was analyzed and the genome sequences of two Xap-look-a-like strains, CITA 14 and CITA 124, non-virulent to Prunus spp., were obtained and compared to those available genomes of X. arboricola associated with this host plant. Differences were found among the genomes of the virulent and the Prunus non-virulent strains in several characters related to the pathogenesis process. Additionally, a pan-genomic analysis that included the available genomes of X. arboricola, revealed that the atypical strains associated with Prunus were related to a group of non-virulent or low virulent strains isolated from a wide host range. The repertoire of the genes related to T3SS and T3Es varied among the strains of this cluster and those strains related to the most virulent pathovars of the species, corylina, juglandis, and pruni. This variability provides information about the potential evolutionary process associated to the acquisition of pathogenicity and host specificity in X. arboricola. Finally, based in the genomic differences observed between the virulent and the non-virulent strains isolated from Prunus, a sensitive and specific real-time PCR protocol was designed to detect and identify Xap strains. This method avoids miss-identifications due to atypical strains of X. arboricola that can cohabit Prunus.
Project description:Three bacteriophages, f20-Xaj, f29-Xaj, and f30-Xaj, with lytic activity against Xanthomonas arboricola pv. juglandis were isolated from walnut trees (VIII Bío Bío Region, Chile). These lytic bacteriophages have double-stranded DNA (dsDNA) genomes of 43,851 bp, 41,865 bp, and 44,262 bp, respectively. These are the first described bacteriophages with lytic activity against X. arboricola pv. juglandis that can be utilized as biocontrol agents.
Project description:The bacterial species Xanthomonas arboricola contains plant pathogenic and nonpathogenic strains. It includes the pathogen X. arboricola pv. juglandis, causing the bacterial blight of Juglans regia. The emergence of a new bacterial disease of J. regia in France called vertical oozing canker (VOC) was previously described and the causal agent was identified as a distinct genetic lineage within the pathovar juglandis. Symptoms on walnut leaves and fruits are similar to those of a bacterial blight but VOC includes also cankers on trunk and branches. In this work, we used comparative genomics and physiological tests to detect differences between four X. arboricola strains isolated from walnut tree: strain CFBP 2528 causing walnut blight (WB), strain CFBP 7179 causing VOC and two nonpathogenic strains, CFBP 7634 and CFBP 7651, isolated from healthy walnut buds. Whole genome sequence comparisons revealed that pathogenic strains possess a larger and wider range of mobile genetic elements than nonpathogenic strains. One pathogenic strain, CFBP 7179, possessed a specific integrative and conjugative element (ICE) of 95 kb encoding genes involved in copper resistance, transport and regulation. The type three effector repertoire was larger in pathogenic strains than in nonpathogenic strains. Moreover, CFBP 7634 strain lacked the type three secretion system encoding genes. The flagellar system appeared incomplete and nonfunctional in the pathogenic strain CFBP 2528. Differential sets of chemoreceptor and different repertoires of genes coding adhesins were identified between pathogenic and nonpathogenic strains. Besides these differences, some strain-specific differences were also observed. Altogether, this study provides valuable insights to highlight the mechanisms involved in ecology, environment perception, plant adhesion and interaction, leading to the emergence of new strains in a dynamic environment.