Project description:Paenibacillus sp. strain A2 is a Gram-negative rod-shaped bacterium isolated from a mixture of formation water and petroleum in Daqing oilfield, China. This facultative aerobic bacterium was found to have a broad capacity for metabolizing hydrocarbon and organosulfur compounds, which are the main reasons for the interest in sequencing its genome. Here we describe the features of Paenibacillus sp. strain A2, together with the genome sequence and its annotation. The 7,650,246 bp long genome (1 chromosome but no plasmid) exhibits a G+C content of 54.2 % and contains 7575 protein-coding and 49 RNA genes, including 3 rRNA genes. One putative alkane monooxygenase, one putative alkanesulfonate monooxygenase, one putative alkanesulfonate transporter and four putative sulfate transporters were found in the draft genome.
Project description:Bacteria have developed various motility mechanisms to adapt to a variety of solid surfaces. A rhizosphere isolate, Paenibacillus sp. NAIST15-1, exhibited unusual motility behavior. When spotted onto 1.5% agar media, Paenibacillus sp. formed many colonies, each of which moved around actively at a speed of 3.6 ?m/sec. As their density increased, each moving colony began to spiral, finally forming a static round colony. Despite its unusual motility behavior, draft genome sequencing revealed that both the composition and organization of flagellar genes in Paenibacillus sp. were very similar to those in Bacillus subtilis. Disruption of flagellar genes and flagellar stator operons resulted in loss of motility. Paenibacillus sp. showed increased transcription of flagellar genes and hyperflagellation on hard agar media. Thus, increased flagella and their rotation drive Paenibacillus sp. motility. We also identified a large extracellular protein, CmoA, which is conserved only in several Paenibacillus and related species. A cmoA mutant could neither form moving colonies nor move on hard agar media; however, motility was restored by exogenous CmoA. CmoA was located around cells and enveloped cell clusters. Comparison of cellular behavior between the wild type and cmoA mutant indicated that extracellular CmoA is involved in drawing water out of agar media and/or smoothing the cell surface interface. This function of CmoA probably enables Paenibacillus sp. to move on hard agar media.
Project description:Paenibacillus sp. strain JDR-2, an aggressively xylanolytic bacterium isolated from sweetgum (Liquidambar styraciflua) wood, is able to efficiently depolymerize, assimilate and metabolize 4-O-methylglucuronoxylan, the predominant structural component of hardwood hemicelluloses. A basis for this capability was first supported by the identification of genes and characterization of encoded enzymes and has been further defined by the sequencing and annotation of the complete genome, which we describe. In addition to genes implicated in the utilization of β-1,4-xylan, genes have also been identified for the utilization of other hemicellulosic polysaccharides. The genome of Paenibacillus sp. JDR-2 contains 7,184,930 bp in a single replicon with 6,288 protein-coding and 122 RNA genes. Uniquely prominent are 874 genes encoding proteins involved in carbohydrate transport and metabolism. The prevalence and organization of these genes support a metabolic potential for bioprocessing of hemicellulose fractions derived from lignocellulosic resources.
Project description:We report the draft genome sequences of Bacillus glennii V44-8, Bacillus saganii V47-23a, and Bacillus sp. strain V59.32b, isolated from the Viking spacecraft assembly cleanroom, and Bacillus sp. strain MER_TA_151 and Paenibacillus sp. strain MER_111, isolated from the Mars Exploration Rover (MER) assembly cleanroom.
Project description:An unknown bacterial strain was detected in the cytostome of Euglena gracilis and on the cell surface of Euglena gracilis using transmission electron microscopy. To identify the unknown bacterium and its function, we performed isolation experiments. Here we present the genome sequence of the isolate that was determined to be Paenibacillus sp. The genome of the bacterium was sequenced four times using Illumina technology with pair-end reads, Illumina technology with mate pair reads (inserts 3-4 and 6-8 Kb), and Nanopore technology with long reads (tens of thousands of nucleotides). Assemblies based on Illumina reads including mate-pair reads could not resolve issues caused by long tandem copies of rRNA, other tandem repeats, and extremely GC-rich regions (90-100%). Only long Nanopore reads resolved those gaps and made it possible to complete the entire genome; moreover, we found one plasmid. The length of the genome is 5.56 Mbp, and the average GC content is 59%. The genome of Paenibacillus sp. RUD330 included 8 copies of all the rRNA genes (23S; 16S; 5S), the length of the plasmid was 8.3 Kb. We hope that our genome assembly and the methods used can help other investigators in the assembly of complex genomes. Our reliable assembly could be a good basis for further physiological and genetic engineering studies of similar strains.
Project description:Microorganisms with the capability to desulfurize petroleum are in high demand with escalating restrictions currently placed on fuel purity. Thermophilic desulfurizers are particularly valuable in high-temperature industrial applications. We report the whole-genome sequences of Paenibacillus napthalenovorans 32O-Y and Paenibacillus sp. 32O-W, which can and cannot, respectively, metabolize dibenzothiophene.
Project description:Paenibacillus algorifonticola sp. nov. is isolated from a cold spring sample from Xinjiang Uyghur Autonomous Region (China), a novel strain that can produce antimicrobial substance against human pathogenic bacteria and fungi, including Staphylococcus aureus and Candida albicans. Here we report a 7.60-Mb assembly of its genome sequence and other useful information, including the coding sequences (CDSs) responsible for the biosynthesis of antibacterial factors, anaerobic respiration and several immune-associated reactions. Also, prospective studies on P. algorifonticola sp. nov. in the cold spring might offer a potential source for the discovery of bioactive compounds with medical value. The data repository is deposited on the website http://www.ncbi.nlm.nih.gov/nuccore/LAQO00000000 and the accession number is LAQO00000000.
Project description:Paenibacillus senegalensis strain JC66(T), is the type strain of Paenibacillus senegalensis sp. nov., a new species within the genus Paenibacillus. This strain, whose genome is described here, was isolated from the fecal flora of a healthy patient. P. senegalensis strain JC66(T) is a facultative Gram-negative anaerobic rod-shaped bacterium. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 5,581,254 bp long genome (1 chromosome but no plasmid) exhibits a G+C content of 48.2% and contains 5,008 protein-coding and 51 RNA genes, including 9 rRNA genes.
Project description:Paenibacillus species, belonging to the family Paenibacillaceae, are able to survive for long periods under adverse environmental conditions. Several Paenibacillus species produce antimicrobial compounds and are capable of biodegradation of various contaminants; therefore, more investigations at the genomic level are necessary to improve our understanding of their ecology, genetics, as well as potential biotechnological applications.In the present study, we describe the draft genome sequence of Paenibacillus sp. EZ-K15 that was isolated from nitrocellulose-contaminated wastewater samples. The genome comprises 7,258,662 bp, with a G+C content of 48.6%. This whole genome shotgun project has been deposited at DDBJ/ENA/GenBank under the accession PDHM00000000. Data demonstrated here can be used by other researchers working or studying in the field of whole genome analysis and application of Paenibacillus species in biotechnological processes.
Project description:Paenibacillus dauci sp. nov., a new kind of endophytic actinobacteria, is separated from the inner tissues of carrot sample, which forms intimated associations with carrot acting as biological control agents. Here we report a 5.37-Mb assembly of its genome sequence and other useful information, including the coding sequences (CDSs) responsible for biological processes such as antibiotic metabolic process, antimicrobial metabolism, anaerobic regulation and the biosynthesis of vitamin B and polysaccharide. This novel strain can be a potential source of novel lead products for exploitation in the field of pharmaceutical, agriculture and industry.