Project description:The Clostridioides difficile toxins TcdA and TcdB are responsible for diarrhea and colitis. The aim of this project was to explore the effects of the toxins on epithelial barrier function and the molecular mechanisms for diarrhea and inflammation. RNA-seq of toxin-treated intestinal cell monolayers was performed to describe the C. difficile-mediated effects. mRNA profiles from intestinale epithelial cells were generated by deep sequencing using Illumina NovaSeq 6000. This data provide the basis for subsequent upstream regulator analysis.
Project description:We isolated suppressors of a ∆ddl mutant strain with constitutively active allelles of the vanS gene. VanS is a histidine kinase of a two-component system that regulates expression of the vanG operon. Transcriptomes of wild-type and ∆ddl vanS (R334L) strains were compared.
Project description:Clostridioides difficile is one of the most common nosocomial pathogens and a global public health threat. Upon colonization of the gastrointestinal tract, C. difficile is exposed to a rapidly changing polymicrobial environment and a dynamic metabolic milieu. Despite the link between the gut microbiota and susceptibility to C. difficile, the impact of synergistic interactions between the microbiota and pathogens on the outcome of infection is largely unknown. Here, we show that microbial cooperation between C. difficile and Enterococcus has a profound impact on the growth, metabolism, and pathogenesis of C. difficile.. Through a process of nutrient restriction and metabolite cross-feeding, E. faecalis shapes the metabolic environment in the gut to enhance C. difficile fitness and increase toxin production. These findings demonstrate that members of the microbiota, such as Enterococcus, have a previously unappreciated impact on C. difficile behavior and virulence.
Project description:The intestines house a diverse microbiota that must compete for nutrients to survive, but the specific limiting nutrients that control pathogen colonization are not clearly defined. Clostridioides difficile colonization typically requires prior disruption of the microbiota, suggesting that outcompeting commensals for resources is key in establishing C. difficile infection (CDI). The immune protein calprotectin (CP) is released into the gut lumen during CDI to chelate zinc (Zn) and other essential nutrient metals. Yet, the impact of Zn limitation on C. difficile colonization is unknown. To define C. difficile responses to Zn limitation, we performed RNA sequencing on C. difficile exposed to CP. In media with CP, C. difficile upregulated genes involved in metal homeostasis and amino acid metabolism.