Project description:Purpose: To understand the bile salts resistance mechanisms in L. paracasei L9 Methods: Samples from L9 cultured with or without bile salts were sequenced on an Illumina Hiseq platform. Three independent biological replicates were produced including 6 samples in total. Results: Raw data were firstly processed through in-house perl scripts to generate clean data, and then clean date were mapped to the reference genome, getting about 8-10 million total mapped reads per sample. Overall design: L. paracasei L9 was cultured in MRS medium with 0.13% oxgall,f
Project description:?efir is a rich source of potentially probiotic bacteria. In the present study, firstly, in vitro screening for probiotic characteristics of ten lactic acid bacteria (LAB) isolated from kefir grains was performed. Strain AGR 4 was selected for further studies. Molecular characterization of strain AGR 4, confirmed that AGR 4 belongs to the <i>Lactobacillus paracasei</i> (reclassified to <i>Lacticaseibacillus paracasei</i> subsp. <i>paracasei</i>) species. Further testing revealed that <i>L. paracasei</i> AGR 4 displayed adhesion capacity on human adenocarcinoma cells, HT-29, similar to that of the reference strain, <i>L. casei</i> ATCC 393. In addition, the novel strain exerted significant time- and dose-dependent antiproliferative activity against HT-29 cells and human melanoma cell line, A375, as demonstrated by the sulforhodamine B cytotoxicity assay. Flow cytometry analysis was employed to investigate the mechanism of cellular death; however, it was found that AGR 4 did not act by inducing cell cycle arrest and/or apoptotic cell death. Taken together, these findings promote the probiotic character of the newly isolated strain <i>L. paracasei</i> AGR 4, while further studies are needed for the detailed description of its biological properties.
Project description:Tolerance to bile stress is crucial for Lactobacillus paracasei to survive in the intestinal tract and exert beneficial actions. In this work, global transcriptomic analysis revealed that 104 genes were significantly changed (log2FoldChange > 1.5, P < 0.05) in detected transcripts of L. paracasei L9 when exposed to 0.13% Ox-bile. The different expressed genes involved in various biological processes, including carbon source utilization, amino acids and peptide metabolism processes, transmembrane transport, transcription factors, and membrane proteins. It is noteworthy that gene mleS encoding malolactic enzyme (MLE) was 2.60-fold up-regulated. Meanwhile, L-malic acid was proved to enhance bile tolerance, which could be attributed to the intracellular alkalinization caused by MLE pathway. In addition, membrane vesicles were observed under bile stress, suggesting a disturbance in membrane charge without L-malic acid. Then, genetic and physiological experiments revealed that MLE pathway enhanced the bile tolerance by maintaining a membrane balance in L. paracasei L9, which will provide new insight into the molecular basis of MLE pathway involved in bile stress response in Lactic acid bacteria.
Project description:In this study, we show that calcium pectinate beads (CPB) allow the formation of 20?µm spherical microcolonies of the probiotic bacteria Lacticaseibacillus paracasei (formerly designated as Lactobacillus paracasei) ATCC334 with a high cell density, reaching more than 10?log (CFU/g). The bacteria within these microcolonies are well structured and adhere to a three-dimensional network made of calcium-pectinate through the synthesis of extracellular polymeric substances (EPS) and thus display a biofilm-like phenotype, an attractive property for their use as probiotics. During bacterial development in the CPB, a coalescence phenomenon arises between neighboring microcolonies accompanied by their peripheral spatialization within the bead. Moreover, the cells of L. paracasei ATCC334 encased in these pectinate beads exhibit increased resistance to acidic stress (pH 1.5), osmotic stress (4.5?M NaCl), the freeze-drying process and combined stresses, simulating the harsh conditions encountered in the gastrointestinal (GI) tract. In vivo, the oral administration of CPB-formulated L. paracasei ATCC334 in mice demonstrated that biofilm-like microcolonies are successfully released from the CPB matrix in the colonic environment. In addition, these CPB-formulated probiotic bacteria display the ability to reduce the severity of a DSS-induced colitis mouse model, with a decrease in colonic mucosal injuries, less inflammation, and reduced weight loss compared to DSS control mice. To conclude, this work paves the way for a new form of probiotic administration in the form of biofilm-like microcolonies with enhanced functionalities.
Project description:This study investigated allergy immunotherapy potential of Lactobacillus paracasei L9 to prevent or mitigate the particulate matter 2.5 (PM2.5) enhanced pre-existing asthma in mice. Firstly, we used a mouse model of asthma (a 21-day ovalbumin (OVA) sensitization and challenge model) followed by PM2.5 exposure twice on the same day of the last challenge. PM2.5 was collected from the urban area of Beijing and underwent analysis for metals and polycyclic aromatic hydrocarbon contents. The results showed that PM2.5 exposure enhanced airway hyper-responsiveness (AHR) and lead to a mixed Th2/ IL-17 response in asthmatic mice. Secondly, the PM2.5 exposed asthmatic mice were orally administered with L9 (4×107, 4×109 CFU/mouse, day) from the day of first sensitization to the endpoint, for 20 days, to investigate the potential mitigative effect of L9 on asthma. The results showed that L9 ameliorated PM2.5 exposure enhanced AHR with an approximate 50% decrease in total airway resistance response to methacholine (48 mg/ml). L9 also prevented the exacerbated eosinophil and neutrophil infiltration in bronchoalveolar lavage fluid (BALF), and decreased the serum level of total IgE and OVA-specific IgG1 by 0.44-fold and 0.3-fold, respectively. Additionally, cytokine production showed that L9 significantly decreased T-helper cell type 2 (Th2)-related cytokines (IL-4, -5, -13) and elevated levels of Th1 related IFN-? in BALF. L9 also reduced the level of IL-17A and increased the level of TGF-?. Taken together, these results indicate that L9 may exert the anti-allergic benefit, possibly through rebalancing Th1/Th2 immune response and modulating IL-17 pro-inflammatory immune response. Thus, L9 is a promising candidate for preventing PM exposure enhanced pre-existing asthma.
Project description:Lactobacillus paracasei are diverse Gram-positive bacteria that are very closely related to Lactobacillus casei, belonging to the Lactobacillus casei group. Due to extreme genome similarities between L. casei and L. paracasei, many strains have been cross placed in the other group. We had earlier sequenced and analyzed the genome of Lactobacillus paracasei Lbs2, but mistakenly identified it as L. casei. We re-analyzed Lbs2 reads into a 2.5 MB genome that is 91.28% complete with 0.8% contamination, which is now suitably placed under L. paracasei based on Average Nucleotide Identity and Average Amino Acid Identity. We took 74 sequenced genomes of L. paracasei from GenBank with assembly sizes ranging from 2.3 to 3.3 MB and genome completeness between 88% and 100% for comparison. The pan-genome of 75 L. paracasei strains hold 15,945 gene families (21,5232 genes), while the core genome contained about 8.4% of the total genes (243 gene families with 18,225 genes) of pan-genome. Phylogenomic analysis based on core gene families revealed that the Lbs2 strain has a closer relationship with L. paracasei subsp. tolerans DSM20258. Finally, the in-silico analysis of the L. paracasei Lbs2 genome revealed an important pathway that could underpin the production of thiamin, which may contribute to the host energy metabolism.
Project description:<h4>Background</h4>Viral infections of the upper airways are the most common cause for absence from work or school, and there is evidence for probiotic efficacy in reducing the incidence and severity of these infections.<h4>Objectives</h4>We aimed to confirm the previously reported beneficial effects of Lactiplantibacillus plantarum HEAL9 and Lacticaseibacillus paracasei 8700:2 against community-acquired common colds and identify a possible mechanism of action.<h4>Methods</h4>In a double-blind study, healthy adults (18-70 years of age) with at least 4 colds during the last 12 months before recruitment were randomly allocated to consume either probiotics (n = 448; total daily dose of 109 CFU with the 2 strains equally represented) or placebo (n = 450) once daily for 12 weeks. Recruitment took place from October to February during 2013-2016 (over 3 cold seasons). The probiotic impact on the severity of the colds (Wisconsin Upper Respiratory Symptom Survey-21) was the primary endpoint, whereas secondary endpoints included the incidence rate and duration of colds and an analysis of immune markers. Mann-Whitney U test and mixed model were used for the analysis of continuous variables and Fisher´s exact test was used for the analysis of categorical endpoints.<h4>Results</h4>Symptom severity was not reduced after intake of the probiotic, despite the positive trend seen in the first season. However, significantly fewer colds were experienced in the probiotic group (mean of 1.24 colds) as compared to the placebo group (mean of 1.36 colds; P = 0.044) for subjects reporting at least 1 cold, the incidence of recurring colds was 30% lower (20.8% vs. 29.8%, respectively; P = 0.055), and the use of analgesics was 18% lower (26.3% vs. 32%, respectively; P = 0.07). After 12 weeks, the change from baseline for IFN-? differed between the groups (mean difference of -7.01; 95% CI, -14.9 to 0.93; P = 0.045).<h4>Conclusions</h4>Intake of Lactiplantibacillus plantarum HEAL9 and Lacticaseibacillus paracasei 8700:2 can be protective against multiple colds in adults prone to getting colds.This trial was registered at clinicaltrials.gov as NCT02013934.