Project description:This experiment was undertaken to document changes in gene expression in the skin of tick-resistant Brahman (Bos indicus) and tick-susceptible Holstein-Friesian (Bos taurus) cattle prior to, and following, infestation with the cattle tick Rhipicephalus (Boophilus) microplus Experiment Overall Design: RNA was extracted from skin samples of tick-naïve cattle (animals with no previous R.microplus exposure) and tick-infested cattle after a period of successive, heavy infestations with R. microplus. Skin samples taken from tick-infested animals were taken at sites where tick larvae (approximately 24 h old) were attached to the skin sample. Skin samples were of 8 mm diameter and full skin thickness (approximately 10 mm). RNA samples from 12 animals (3 tick-naive Holstein-Friesian, 3 tick-naive Brahman, 3 tick-infested Holstein-Friesian and 3 tick-infested Brahman) were processed and hybridised to individual slides.
Project description:BACKGROUND: Rhipicephalus (Boophilus) microplus is an obligate blood feeder which is host specific to cattle. Existing knowledge pertaining to the host or host breed effects on tick transcript expression profiles during the tick - host interaction is poor. RESULTS: Global analysis of gene expression changes in whole R. microplus ticks during larval, pre-attachment and early adult stages feeding on Bos indicus and Bos taurus cattle were compared using gene expression microarray analysis. Among the 13,601 R. microplus transcripts from BmiGI Version 2 we identified 297 high and 17 low expressed transcripts that were significantly differentially expressed between R. microplus feeding on tick resistant cattle [Bos indicus (Brahman)] compared to R. microplus feeding on tick susceptible cattle [Bos taurus (Holstein-Friesian)] (p <or= 0.001). These include genes encoding enzymes involved in primary metabolism, and genes related to stress, defence, cell wall modification, cellular signaling, receptor, and cuticle formation. Microarrays were validated by qRT-PCR analysis of selected transcripts using three housekeeping genes as normalization controls. CONCLUSION: The analysis of all tick stages under survey suggested a coordinated regulation of defence proteins, proteases and protease inhibitors to achieve successful attachment and survival of R. microplus on different host breeds, particularly Bos indicus cattle. R. microplus ticks demonstrate different transcript expression patterns when they encounter tick resistant and susceptible breeds of cattle. In this study we provide the first transcriptome evidence demonstrating the influence of tick resistant and susceptible cattle breeds on transcript expression patterns and the molecular physiology of ticks during host attachment and feeding.