Project description:Halophilic and psychrophilic marine bacteria are source of interesting bioactive molecules for biotechnology. We report here the whole-genome sequences of two of them, Pseudoalteromonas sp. MIP2626 isolated from tropical peeled shrimps and Psychrobacter sp. BI730 isolated from deep-sea hydrothermal vent. Sequencing of both genomes was performed by Illumina HiSeq platform (2?×?150 pb). De novo assemblies using Spades v3.9 generated 136 contigs for Pseudoalteromonas MIP2626 and 42 contigs for Psychrobacter BI730, representing a genome size of 3.9 Mb and 3.2 Mb, respectively. Phylogenetic based on 16S rRNA gene sequence and phylogenomic analyses were reported to compare the new sequences with Pseudoalteromonas and Psychrobacter representative strains available in the public databases. The genome sequences have been deposited at GenBank under the accession numbers JAATTW000000000 for Pseudoalteromonas sp. MIP2626 and JAATTV000000000 for Psychrobacter sp. BI730.
Project description:One of the most distinct features of Pseudoalteromonas sp. SCSIO 11900 is its ability to form a very robust pellicle than most Pseudoalteromonas strains. Thus we want to identify the genes essential for the pellicle formation of SCSIO 11900. We compared transcriptom profiles of planktonic cells, initial pellicle and mature pellicle of coral Pseudoalteromonas sp. SCSIO 11900 and revealed that some unique genes from horizontal gene transfer is involved in the pellicle formation of SCSIO 11900. Overall design: mRNA profiles of planktonic cells, initial pellicle cells and mature pellicle cells Pseudoalteromonas sp. SCSIO 11900 were generated by Illumina Hiseq2000.
Project description:We compared genetic profiles of planktonic stage to biofilm stage of deep sea bacterium Pseudoalteromonas sp. SM9913 and revealed genetic features during switch from planktonic to pellicle stage in Pseudoalteromonas sp. SM9913. mRNA profiles of Pseudoalteromonas sp. SM9913 planktonic cells, initial pellicle cells and mature pellicle cells were generated by Illumina Hiseq2000.
Project description:Pseudoalteromonas sp. strain OCN003 is a marine gammaproteobacterium that was isolated from a diseased colony of the common Hawaiian reef coral, Montipora capitata, found on a reef surrounding Moku o Lo'e in Kāne'ohe Bay, Hawaii. Here, we report the complete genome of Pseudoalteromonas sp. strain OCN003.
Project description:Biofilm formation results in medical threats or economic losses and is therefore a major concern in a variety of domains. In two-species biofilms of marine bacteria grown under dynamic conditions, Pseudoalteromonas sp. strain 3J6 formed mixed biofilms with Bacillus sp. strain 4J6 but was largely predominant over Paracoccus sp. strain 4M6 and Vibrio sp. strain D01. The supernatant of Pseudoalteromonas sp. 3J6 liquid culture (SN(3J6)) was devoid of antibacterial activity against free-living Paracoccus sp. 4M6 and Vibrio sp. D01 cells, but it impaired their ability to grow as single-species biofilms and led to higher percentages of nonviable cells in 48-h biofilms. Antibiofilm molecules of SN(3J6) were able to coat the glass surfaces used to grow biofilms and reduced bacterial attachment about 2-fold, which might partly explain the biofilm formation defect but not the loss of cell viability. SN(3J6) had a wide spectrum of activity since it affected all Gram-negative marine strains tested except other Pseudoalteromonas strains. Biofilm biovolumes of the sensitive strains were reduced 3- to 530-fold, and the percentages of nonviable cells were increased 3- to 225-fold. Interestingly, SN(3J6) also impaired biofilm formation by three strains belonging to the human-pathogenic species Pseudomonas aeruginosa, Salmonella enterica, and Escherichia coli. Such an antibiofilm activity is original and opens up a variety of applications for Pseudoalteromonas sp. 3J6 and/or its active exoproducts in biofilm prevention strategies.
Project description:Pseudoalteromonas sp. strain A601 is a marine bacterium with excellent polysaccharide-degrading capabilities. Here, we present a high-quality draft genome sequence of strain A601 with a size of approximately 4.89 Mb and a mean G+C content of 40.0%. Various putative polysaccharide-degrading genes were found in the draft genome.
Project description:Pseudoalteromonas sp. strain ECSMB14103 was isolated from marine biofilms formed on the East China Sea. The draft genome sequence comprises 4.11 Mp with a G+C content of 39.7%. The information from the draft genome will contribute to an understanding of bacteria-animal interaction.
Project description:We report the 4.049-Mbp high-quality draft assembly of the Pseudoalteromonas luteoviolacea strain B (ATCC 29581) genome. This marine species is known to biosynthesize several antimicrobial compounds, including the purple pigment violacein. Whole-genome sequencing and genome mining will complement experimental studies aimed at elucidating novel biosynthetic pathways capable of producing pharmaceutically relevant molecules. Based upon 16S rRNA phylogenetic analysis, we propose that strain ATCC 29581 be classified as a distinct phylogenetic species of the genus Pseudoalteromonas.