Project description:Here, we present the draft genome sequence of Microbacterium sp. strain UCD-TDU, a member of the phylum Actinobacteria. The assembly contains 3,746,321 bp (in 8 scaffolds). This strain was isolated from a residential toilet as part of an undergraduate student research project to sequence reference genomes of microbes from the built environment.
Project description:We report here the genome assembly and analysis of Microbacterium strain sp. LKL04, a Gram-positive bacterial endophyte isolated from switchgrass plants (Panicum virgatum) grown on a reclaimed coal-mining site. The 2.9-Mbp genome of this bacterium was assembled into a single contig encoding 2,806 protein coding genes.
Project description:Microbacterium are Gram-positive, nonspore-forming, rod-shaped bacteria inhabiting a wide range of environments including soil, water, dairy products, other living organisms, etc. Microbacterium sp. strain Be9, isolated from mill tailings porewaters in France, shows a remarkable behavior in presence of uranium under distinct conditions, which is the main reason for the interest in sequencing its genome. In this work, we describe the draft genome sequence of Be9, comprising 4,046,806 bp, with a G+C content of 68.10% and containing 3,947 protein-coding sequences. The preliminary genome annotation analysis identified some genes encoding for resistance to antibiotics and toxic compounds like heavy metals. This draft genome has been deposited at DDBJ/ENA/GenBank under the accession PRJNA590666.
Project description:Microbacterium sp. strain SGAir0570 was isolated from air samples collected in Singapore. Its genome was assembled using single-molecule real-time sequencing and MiSeq short reads. It has one chromosome with a length of 3.38?Mb and one 59.2-kb plasmid. It contains 3,170 protein-coding genes, 48 tRNAs, and 6 rRNAs.
Project description:Microbacterium (formerly Corynebacterium) sp. No. 7 was isolated from activated sludge as a polypropylene glycol (PPG)-assimilating bacterial strain. Its oxidative PPG degradation has been proposed on the basis of PPG dehydrogenase activity and the metabolic products. Here, we report the complete genome sequence of Microbacterium sp. No. 7. The genome of the strain No. 7 is composed of a 4,599,046-bp circular chromosome and two linear plasmids. The whole finishing was conducted in silico with aids of the computational tools GenoFinisher and AceFileViewer. Strain No. 7 is available from the Biological Resource Center, National Institute of Technology and Evaluation (NITE) (Tokyo, Japan).
Project description:We report here the genome sequence of Microbacterium sp. strain TPU 3598, previously described as a producer of lumichrome. The sequenced genome size is 3,787,270 bp, the average G+C content is 68.39%, and 3,674 protein-coding sequences are predicted.
Project description:Strain G3(T) (CSUR P207?=?DSM 26203) was isolated from the fecal sample of a wild gorilla (Gorilla gorilla subsp gorilla) from Cameroon. It is a Gram-positive, facultative anaerobic short rod. This strain exhibits a 16S rRNA sequence similarity of 98.2 % with Microbacterium thalassium, the closest validly published Microbacterium species and member of the family Microbacteriaceae. Moreover, it shows a low MALDI-TOF-MS score (1.1 to 1.3) that does not allow any identification. Thus, it is likely that this strain represents a new species. Here we describe the phenotypic features of this organism, the complete genome sequence and annotation. The 3,692,770 bp long genome (one chromosome but no plasmid) contains 3,505 protein-coding and 61 RNA genes, including 4 rRNA genes. In addition, digital DNA-DNA hybridization values for the genome of the strain G3(T) against the closest Microbacterium genomes range between 19.7 to 20.5, once again confirming its new status as a new species. On the basis of these polyphasic data, consisting of phenotypic and genomic analyses, we propose the creation of Microbacterium gorillae sp. nov. that contains the strain G3(T).
Project description:We report the draft genome sequence of Microbacterium sp. strain C448, isolated from agricultural soil with a decade of exposure to veterinary antibiotics on the basis of using sulfamethazine and other antibiotics as the sole sources of carbon. The genome sequence revealed that strain C448 harbors several antibiotic resistance genes, including sulI.
Project description:A yellow-pigmented coryneform rod was isolated from the blood of a child with acute lymphoblastic leukemia who was perfused with a central venous catheter. The culture bottles were positive twice, at a 2-month interval. The isolate was identified as a Microbacterium sp. and studied along with five other similar strains. Phenotypic, chemotaxonomic, and genetic characteristics indicated that they are closely related to Microbacterium oxydans but that they belong to a distinct species, for which the name Microbacterium paraoxydans sp. nov. is proposed. The type strain of M. paraoxydans is CF36(T) = DSM 15019(T). The G+C content of its DNA is 69.9 mol%.
Project description:Xanthan, a highly stable polysaccharide which is not easily degraded by most microorganisms, contains a cellulosic backbone with trisaccharide side chains composed of mannosyl-glucuronyl-mannose attached ?-1,3 to alternating glucosyl residues. Different digestion strategies were first applied to demonstrate the complexity about the proteomes of Microbacterium sp. XT11 in xanthan medium and glucose medium. Significantly up-regulated proteins induced by xanthan were screened out by the label-free quantitation of the proteomes of Microbacterium sp. XT11 in xanthan medium and glucose medium. Consequently, 2746 and 2878 proteins were identified in proteomes of Microbacterium sp. XT11 in xanthan medium and glucose medium individually, which represent 80.6 and 84.4% of total protein dataset predicted to be expressed by the gene. In the list of 430 induced proteins containing the proteins specifically expressed or up-regulated in xanthan medium, 19 proteins involved in carbohydrate-active enzymes database and 38 proteins annotated with transporter activity were critical in the degrading pathway of xanthan. Four CAZymes (GH3, GH38, GH9, and PL8) and one ABC transporter (LX1-1GL001097) were verified with quantitative real-time polymerase chain reaction. Four CAZymes (GH3, GH38, GH9, and PL8) were further verified with the enzyme assay. This study suggests a xanthan-degrading pathway in Microbacterium sp. XT11, and other potential xanthan degradation-related proteins still need further investigation.