Project description:Here we present the physiological features of Pseudomonas extremaustralis strain USBA-GBX-515 (CMPUJU 515), isolated from soils in Superparamo ecosystems, > 4000 m.a.s.l, in the northern Andes of South America, as well as the thorough analysis of the draft genome. Strain USBA-GBX-515 is a Gram-negative rod shaped bacterium of 1.0-3.0 ?m?×?0.5-1 ?m, motile and unable to form spores, it grows aerobically and cells show one single flagellum. Several genetic indices, the phylogenetic analysis of the 16S rRNA gene sequence and the phenotypic characterization confirmed that USBA-GBX-515 is a member of Pseudomonas genus and, the similarity of the 16S rDNA sequence was 100% with P. extremaustralis strain CT14-3T. The draft genome of P. extremaustralis strain USBA-GBX-515 consisted of 6,143,638 Mb with a G?+?C content of 60.9 mol%. A total of 5665 genes were predicted and of those, 5544 were protein coding genes and 121 were RNA genes. The distribution of genes into COG functional categories showed that most genes were classified in the category of amino acid transport and metabolism (10.5%) followed by transcription (8.4%) and signal transduction mechanisms (7.3%). We performed experimental analyses of the lipolytic activity and results showed activity mainly on short chain fatty acids. The genome analysis demonstrated the existence of two genes, lip515A and est515A, related to a triacylglycerol lipase and carboxylesterase, respectively. Ammonification genes were also observed, mainly nitrate reductase genes. Genes related with synthesis of poly-hydroxyalkanoates (PHAs), especially poly-hydroxybutyrates (PHBs), were detected. The phaABC and phbABC operons also appeared complete in the genome. P. extremaustralis strain USBA-GBX-515 conserves the same gene organization of the type strain CT14-3T. We also thoroughly analyzed the potential for production of secondary metabolites finding close to 400 genes in 32 biosynthetic gene clusters involved in their production.
Project description:Previous studies revealed the potential of Labrenzia aggregata USBA 371 to produce cytotoxic metabolites. This study explores its metabolic diversity and compounds involved in its cytotoxic activity. Extracts from the extracellular fraction of strain USBA 371 showed high levels of cytotoxic activity associated with the production of diketopiperazines (DKPs). We purified two compounds and a mixture of two other compounds from this fraction. Their structures were characterized by 1D and 2D nuclear magnetic resonance (NMR). The purified compounds were evaluated for additional cytotoxic activities. Compound 1 (cyclo (l-Pro-l-Tyr)) showed cytotoxicity to the following cancer cell lines: breast cancer 4T1 (IC50 57.09 ± 2.11 µM), 4T1H17 (IC50 40.38 ± 1.94), MCF-7 (IC50 87.74 ± 2.32 µM), murine melanoma B16 (IC50 80.87 ± 3.67), human uterus sarcoma MES-SA/Dx5 P-pg (-) (IC50 291.32 ± 5.64) and MES-SA/Dx5 P-pg (+) (IC50 225.28 ± 1.23), and murine colon MCA 38 (IC50 29.85 ± 1.55). In order to elucidate the biosynthetic route of the production of DKPs and other secondary metabolites, we sequenced the genome of L. aggregata USBA 371. We found no evidence for biosynthetic pathways associated with cyclodipeptide synthases (CDPSs) or non-ribosomal peptides (NRPS), but based on proteogenomic analysis we suggest that they are produced by proteolytic enzymes. This is the first report in which the cytotoxic effect of cyclo (l-Pro-l-Tyr) produced by an organism of the genus Labrenzia has been evaluated against several cancer cell lines.
Project description:A search for extremophile organisms producing bioactive compounds led us to isolate a microalga identified as Galdieria sp. USBA-GBX-832 from acidic thermal springs. We have cultured Galdieria sp. USBA-GBX-832 under autotrophic, mixotrophic and heterotrophic conditions and determined variations of its production of biomass, lipids and PUFAs. Greatest biomass and PUFA production occurred under mixotrophic and heterotrophic conditions, but the highest concentration of lipids occurred under autotrophic conditions. Effects of variations of carbon sources and temperature on biomass and lipid production were evaluated and factorial experiments were used to analyze the effects of substrate concentration, temperature, pH, and organic and inorganic nitrogen on biomass production, lipids and PUFAs. Production of biomass and lipids was significantly dependent on temperature and substrate concentration. Greatest accumulation of PUFAs occurred at the lowest temperature tested. PUFA profiles showed trace concentrations of arachidonic acid (C20:4) and eicosapentaenoic acid (C20:5). This is the first time synthesis of these acids has been reported in Galdieria. These findings demonstrate that under heterotrophic conditions this microalga's lipid profile is significantly different from those observed in other species of this genus which indicates that the culture conditions evaluated are key determinants of these organisms' responses to stress conditions and accumulation of these metabolites.
Project description:MicroRNAs (miRNAs) are key players in regulation of gene expression at post-transcription level in eukaryotic cells. MiRNAs have been intensively studied in plants, animals and viruses. The investigations of bacterial miRNAs have gained less attention, except for the recent studies on miRNAs derived from Streptococcus mutans ATCC 25175 and Escherichia coli DH10B. In this study, high-throughput sequencing approach was employed to investigate the miRNA population in bacteria of the genus Thalassospira using both the miRDeep2 and CID-miRNA methods. A total of 984 putative miRNAs were identified in 9 species of the genus Thalassospira using both miRDeep and CID-miRNA analyses. Fifty seven conserved putative miRNAs were found in different species of the genus Thalassospira, and up to 6 miRNAs were found to be present at different locations in the T. alkalitolerans JCM 18968T, T. lucentensis QMT2T and T. xianhensis P-4T. None of the putative miRNAs was found to share sequence to the reported miRNAs in E. coli DH10B and S. mutans ATCC 25175. The findings provide a comprehensive list of computationally identified miRNAs in 9 bacterial species of the genus Thalassospira and addressed the existing knowledge gap on the presence of miRNAs in the Thalassospira genomes.