Project description:Considering the industrial interest of biodegradable polymer poly-3-hydroxybutyrate (PHB), the marine bacteria Neptunomonas antarctica was studied for its ability to accumulate PHB. The extracted polymer was confirmed to be PHB by nuclear magnetic resonance analysis. In shake flask cultures using natural seawater as medium components, PHB was produced up to 2.12 g/L with a yield of 0.18 g PHB/g fructose. In the presence of artificial seawater, the PHB titer and yield reached 2.13 g/L and 0.13 g PHB/g fructose, respectively. The accumulated polymer gradually decreased when fructose was exhausted, indicating that intracellular PHB was degraded by N. antarctica. The weight-average and number-average molecular weights of PHB produced within natural seawater were 2.4 × 10(5) g/mol and 1.7 × 10(5) g/mol, respectively. Our results highlight the potential of N. antarctica for PHB production with seawater as a nutrient source.
Project description:Investigation of whole genome gene expression level in Pseudozyma antarctica T-34, compared to Ustilago maydis UM521. To clarify the transcriptomic characteristics of Pseudozyma antarctica under the conditions of high MEL production, a DNA microarray of both the strains, Pseudozyma antarctica T-34 and Ustilago maydis UM521 was prepared and analyzed the transcriptomes. A DNA chip study using mRNA from the cultures of Pseudozyma antarctica T-34 and Ustilago maydis UM521 demonstrated the gene expression level of each strain.