Project description:The domestic ferret (Mustela putorius furo) is an important animal model for multiple human respiratory diseases. It is considered the 'gold standard' for modeling human influenza virus infection and transmission. Here we describe the 2.41 Gb draft genome assembly of the domestic ferret, constituting 2.28 Gb of sequence plus gaps. We annotated 19,910 protein-coding genes on this assembly using RNA-seq data from 21 ferret tissues. We characterized the ferret host response to two influenza virus infections by RNA-seq analysis of 42 ferret samples from influenza time-course data and showed distinct signatures in ferret trachea and lung tissues specific to 1918 or 2009 human pandemic influenza virus infections. Using microarray data from 16 ferret samples reflecting cystic fibrosis disease progression, we showed that transcriptional changes in the CFTR-knockout ferret lung reflect pathways of early disease that cannot be readily studied in human infants with cystic fibrosis disease.
Project description:Animal experiments have shown that nonhuman primates, cats, ferrets, hamsters, rabbits, and bats can be infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition, SARS-CoV-2 RNA has been detected in felids, mink, and dogs in the field. Here, we describe an in-depth investigation using whole-genome sequencing of outbreaks on 16 mink farms and the humans living or working on these farms. We conclude that the virus was initially introduced by humans and has since evolved, most likely reflecting widespread circulation among mink in the beginning of the infection period, several weeks before detection. Despite enhanced biosecurity, early warning surveillance, and immediate culling of animals in affected farms, transmission occurred between mink farms in three large transmission clusters with unknown modes of transmission. Of the tested mink farm residents, employees, and/or individuals with whom they had been in contact, 68% had evidence of SARS-CoV-2 infection. Individuals for which whole genomes were available were shown to have been infected with strains with an animal sequence signature, providing evidence of animal-to-human transmission of SARS-CoV-2 within mink farms.
Project description:Alexei V. Abramov, Andrey Yu. Puzachenko, and Ryuichi Masuda (2018) Morphometric variation in 23 cranial characters of 555 Siberian weasels (Mustela sibirica) was studied across its whole distribution range. Most of the distribution range in Siberia and China is occupied by medium-sized weasels, whereas the eastern part of the species range - including the Russian Far East, Korea and eastern China - is occupied by the larger form. Specimens from the Pacific islands (Jeju and Tsushima) were morphologically closely related to the western form of M. sibirica than to the neighboring continental weasels. The western form can be treated as nominotypical subspecies M. s. sibirica Pallas, 1773, whereas the eastern form can be treated as M. s. manchurica Brass, 1911. Small-sized weasels from the eastern Himalayan area (Myanmar and southwestern China) form a distinct group within M. sibirica, and they were treated as a subspecies; M. s. moupinensis (Milne- Edwards, 1874). Specimens from the western Himalayas (Kashmir, Nepal and Sikkim) are morphologically distinct from all other populations of Mustela sibirica and can be treated as a separate species Mustela subhemachalana Hodgson, 1837.
Project description:Salmonella is an important human pathogen and poultry products constitute an important source of human infections. This study investigated prevalence; identified serotypes based on whole genome sequence, described spatial distribution of Salmonella serotypes and predicted risk factors that could influence the prevalence of Salmonella infection in commercial poultry farms in Nigeria. A cross sectional approach was employed to collect 558 pooled shoe socks and dust samples from 165 commercial poultry farms in North West Nigeria. On-farm visitation questionnaires were administered to obtain information on farm management practices in order to assess risk factors for Salmonella prevalence. Salmonella was identified by culture, biotyping, serology and polymerase chain reaction (PCR). PCR confirmed isolates were paired-end Illumina- sequenced. Following de novo genome assembly, draft genomes were used to obtain serotypes by SeqSero2 and SISTR pipeline and sequence types by SISTR and Enterobase. Risk factor analysis was performed using the logit model. A farm prevalence of 47.9% (CI95 [40.3-55.5]) for Salmonella was observed, with a sample level prevalence of 15.9% (CI95 [12.9-18.9]). Twenty-three different serotypes were identified, with S. Kentucky and S. Isangi as the most prevalent (32.9% and 11%). Serotypes showed some geographic variation. Salmonella detection was strongly associated with disposal of poultry waste and with presence of other livestock on the farm. Salmonella was commonly detected on commercial poultry farms in North West Nigeria and S. Kentucky was found to be ubiquitous in the farms.
Project description:The domestic ferret (Mustela putorius furo) is an important model organism for the study of avian influenza and other diseases of humans and animals, as well as a popular pet animal. In order to evaluate genetic diversity and study disease relationships in ferrets, 22 nuclear microsatellite loci (17 dinucleotide and 5 tetranucleotide) were developed from ferret genomic libraries and organized into seven multiplex sets. Polymorphism was preliminarily assessed in one population in Australia and one in the USA, sampled with 25 individuals each. The loci displayed allelic diversity ranging from 1 to 5 alleles, and expected and observed heterozygosities ranging from 0.04 to 0.65 and 0.04 to 0.76, respectively. Additionally, the loci amplified products in 15 samples from the wild ancestor, European polecat (Mustela putorius) and domestic ferret-polecat hybrids. In polecat/hybrid samples, allelic diversity ranged from 3 to 8 alleles, and expected and observed heterozygosities ranged from 0.13 to 0.81 and 0.13 to 0.80 respectively. These markers will be useful for molecular assessments of genetic diversity and applications to evolution, ecology, and health in domestic ferrets and wild polecats.
Project description:At high latitudes, climatic shifts hypothetically initiate recurrent episodes of divergence by isolating populations in glacial refugia-ice-free regions that enable terrestrial species persistence. Upon glacial recession, populations subsequently expand and often come into contact with other independently diverging populations, resulting in gene flow. To understand how recurrent periods of isolation and contact may have impacted evolution at high latitudes, we investigated introgression dynamics in the stoat (Mustela erminea), a Holarctic mammalian carnivore, using whole-genome sequences. We identify two spatio-temporally distinct episodes of introgression coincident with large-scale climatic shifts: contemporary introgression in a mainland contact zone and ancient contact ~200 km south of the contemporary zone, in the archipelagos along North America's North Pacific Coast. Repeated episodes of gene flow highlight the central role of cyclic climates in structuring high-latitude diversity, through refugial divergence and introgressive hybridization. When introgression is followed by allopatric isolation (e.g., insularization) it may ultimately expedite divergence.