Project description:Interaction between T follicular helper (Tfh) cells and B cells is complex and involves various pathways, including the production of IL-21 by the Tfh cells. Secretion of IL-21 results in B cell differentiation toward immunoglobulin-producing plasmablasts. In patients after kidney transplantation, the formation of alloantibodies produced by donor antigen-activated B cells are a major cause of organ failure. In this allogeneic response, the role of IL-21-producing Tfh cells that regulate B cell differentiation is unknown. Here, we tested, in an alloantigen-driven setting, whether Tfh cell help signals control B cell differentiation with its dependency on IL-21. Pre-transplantation patient PBMCs were sorted into pure CD4posCXCR5pos Tfh cells and CD19posCD27pos memory B cells and stimulated with donor antigen in the presence or absence of an IL-21 receptor (IL-21R) antagonist (?IL-21R). Donor antigen stimulation initiated expression of the activation markers inducible co-stimulator (ICOS) and programmed death 1 (PD-1) on Tfh cells and a shift toward a mixed Tfh2 and Tfh17 phenotype. The memory B cells underwent class switch recombination and differentiated toward IgM- and IgG-producing plasmablasts. In the presence of ?IL-21R, a dose-dependent inhibition of STAT3 phosphorylation was measured in both T and B cells. Blockade of the IL-21R did not have an effect on PD-1 and ICOS expression on Tfh cells but significantly inhibited B cell differentiation. The proportion of plasmablasts decreased by 78% in the presence of ?IL-21R. Moreover, secreted IgM and IgG2 levels were significantly lower in the presence of ?IL-21R. In conclusion, our results demonstrate that IL-21 produced by alloantigen-activated Tfh cells controls B cell differentiation toward antibody producing plasmablasts. The IL-21R might, therefore, be a useful target in organ transplantation to prevent antigen-driven immune responses leading to graft failure.
Project description:BACKGROUND:Immunoglobulin class-switch recombination defects (CSR-D) are rare primary immunodeficiencies characterized by impaired production of switched immunoglobulin isotypes and normal or elevated IgM levels. They are caused by impaired T:B cooperation or intrinsic B cell defects. However, many immunoglobulin CSR-Ds are still undefined at the molecular level. OBJECTIVE:This study's objective was to delineate new causes of immunoglobulin CSR-Ds and thus gain further insights into the process of immunoglobulin class-switch recombination (CSR). METHODS:Exome sequencing in 2 immunoglobulin CSR-D patients identified variations in the INO80 gene. Functional experiments were performed to assess the function of INO80 on immunoglobulin CSR. RESULTS:We identified recessive, nonsynonymous coding variations in the INO80 gene in 2 patients affected by defective immunoglobulin CSR. Expression of wild-type INO80 in patients' fibroblastic cells corrected their hypersensitivity to high doses of ?-irradiation. In murine CH12-F3 cells, the INO80 complex accumulates at S? and E? regions of the IgH locus, and downregulation of INO80 as well as its partners Reptin and Pontin impaired CSR. In addition, Reptin and Pontin were shown to interact with activation-induced cytidine deaminase. Finally, an abnormal separation of sister chromatids was observed upon INO80 downregulation in CH12-F3 cells, pinpointing its role in cohesin activity. CONCLUSION:INO80 deficiency appears to be associated with defective immunoglobulin CSR. We propose that the INO80 complex modulates cohesin function that may be required during immunoglobulin switch region synapsis.
Project description:CTP:phosphocholine cytidylyltransferase (CCT) is a key rate-controlling enzyme in the biosynthetic pathway leading to the principle membrane phospholipid, phosphatidylcholine. CCTalpha is the predominant isoform expressed in mammalian cells. To investigate the role of CCTalpha in the development and function of B-lymphocytes, mice with B-lymphocytes that selectively lacked CCTalpha were derived using the CD19-driven Cre/loxP system. When challenged with a T-cell-dependent antigen, the animals harboring CCTalpha-deficient B-cells exhibited a hyper-IgM secretion phenotype coupled with a lack of IgG production. The inability of CCTalpha-/- B-cells to undergo class switch recombination correlated with a proliferation defect in vivo and in vitro in response to antigenic and mitogenic stimuli. Lipopolysaccharide stimulation of CCTalpha-/- B-cells resulted in an early trigger of the unfolded protein response-mediated splicing of Xbp-1 mRNA, and this was accompanied by accelerated kinetics of IgM secretion and higher incidence of IgM-secreting cells. Thus, the inability of stimulated B-cells to produce enough phosphatidylcholine prevents proliferation and class switch recombination but leads to unfolded protein response activation and a hyper-IgM secretion phenotype.
Project description:Immunoglobulin M (IgM) memory cells undergo differentiation in germinal centers following antigen challenge, but the full effector cell potential of these cells is unknown. We monitored the differentiation of enhanced yellow fluorescent protein (eYFP)-labeled CD11c+ and CD11cneg T-bet+ IgM memory cells after their transfer into naive recipient mice. Following challenge infection, many memory cells differentiated into IgM-producing plasmablasts. Other donor B cells entered germinal centers, downregulated CD11c, underwent class switch recombination, and became switched memory cells. Yet other donor cells were maintained as IgM memory cells, and these IgM memory cells retained their multi-lineage potential following serial transfer. These findings were corroborated at the molecular level using immune repertoire analyses. Thus, IgM memory cells can differentiate into all effector B cell lineages and undergo self-renewal, properties that are characteristic of stem cells. We propose that these memory cells exist to provide long-term multi-functional immunity and act primarily to maintain the production of protective antibodies.
Project description:Local production of IgA and IgE in the airways has been proposed to be an important event in both immune protection from pathogens and the pathogenesis of airway allergic diseases.The objective of this study was to investigate the production of B cell-activating factor of the TNF family (BAFF), an important regulator of B-cell survival and immunoglobulin class-switch recombination, in bronchoalveolar lavage (BAL) fluid after segmental allergen challenge of allergic subjects.Segmental allergen challenge with saline or allergen was performed in 16 adult allergic subjects. BAL was performed at both saline- and allergen-challenged sites 20 to 24 hours after challenge. Concentrations of B cell-active cytokines, including BAFF, IL-6, and IL-13, were measured by using specific ELISA and cytometric bead array assays.Levels of BAFF protein were significantly increased in BAL fluid after allergen challenge (53.8 pg/mL [range, 0-407.4 pg/mL], P = .001) compared with those at saline-challenged sites (0 pg/mL [0-34.7 pg/mL]). In the BAL fluid after allergen challenge, BAFF levels were significantly correlated with absolute numbers of total cells (r = 0.779, P < .001), lymphocytes (r = 0.842, P < .001), neutrophils (r = 0.809, P < .001), and eosinophils (r = 0.621, P = .010) but did not correlate with macrophages. Normalization to albumin indicated that BAFF production occurred locally in the airways. BAFF levels were also significantly correlated with the other B cell-activating cytokines IL-6 (r = 0.875, P < .001) and IL-13 (r = 0.812, P < .001).The antigen-induced production of BAFF in the airway might contribute to local class-switch recombination and immunoglobulin synthesis by B cells.
Project description:Blimp1 is an essential regulator of plasma cells. Here we studied its functions in early plasmablast differentiation by identifying regulated Blimp1 target genes. Blimp1 promoted plasmablast migration and adhesion by controlling many genes involved in these processes. It repressed several transcription factor genes and Aicda, thus silencing B-cell-specific gene expression, antigen presentation and class switch recombination in plasmablasts. It also directly activated genes, leading to increased expression of the plasma cell regulator IRF4 and proteins involved in immunoglobulin secretion. Blimp1 strongly induced immunoglobulin gene transcription by controlling the activity of Igh and Igk 3’ enhancers and regulated the posttranscriptional switch of expression from the membrane-bound to secreted immunoglobulin heavy-chain by activating Ell2. Notably, Blimp1 recruited chromatin-remodeling and histone-modifying complexes to regulate its target gene. Hence, many essential functions of plasma cells are under Blimp1 control. Overall design: 40 samples in total: A) 16 RNA-Seq samples in 5 cell types: Activated B cells (Act B cell, 2 replicates), Pre-Plasmablasts (Pre-PB, 3 genotypes, 2-4 replicates each), Plasmablasts (PB, 2 replicates), Plasma cells (2 replicates), Mature B cells (2 replicates); B) 19 ChIP-Seq samples in 3 cell types: Act B cell (IRF4, H3K9ac, H3K4me2, H3K4me3, 1 replicate each; H3K27me3, 2 genotypes, 2 and 1 replicates), Pre-PB (IRF4, 1 replicate; H3K27me3, 2 genotypes, 1 replicate each), PB ( PU.1, IRF4, H3K9ac, H3K4me2, H3K4me3, 1 replicate each; Blimp1, H3K27me3, 2 replicates each); C) 5 ATAC-Seq samples in 3 cell types: Act B cell (2 genotypes, 1 replicate each), Pre-PB (2 genotypes, 1 replicate each), PB (1 replicate).
Project description:From humans to frogs, immunoglobulin class switching introduces different effector functions to antibodies through an intrachromosomal DNA recombination process at the heavy-chain locus. Although there are two conventional antibody classes (IgM, IgW) in sharks, their heavy chains are encoded by 20 to >100 miniloci. These representatives of the earliest jawed vertebrates possess a primordial immunoglobulin gene organization where each gene cluster is autonomous and contains a few rearranging gene segments (VH-D1-D2-JH) with one constant region, ? or ?.V(D)J rearrangement always takes place within the ? cluster, but here we show that the VDJ can be expressed with constant regions from different clusters, although IgH genes are spatially distant, at >120 kb. Moreover, reciprocal exchanges take place between Ig? and Ig? genes. Switching is augmented with deliberate immunization and is concomitant with somatic hypermutation activity. Because switching occurs independently of the partners' linkage position, some events involve transchromosomal recombination. The switch sites consist of direct joins between two genes in the 3' intron flanking JH.Our data are consistent with a mechanism of cutting or joining of distal DNA lesions initiated by activation-induced cytidine deaminase (AID), in the absence of mammalian-type switch regions. We suggest that, in shark, with its many autonomous IgH targeted by programmed DNA breakage, factors predisposing broken DNA ends to translocate configured the earliest version of class switch recombination.
Project description:Immunoglobulin A (IgA) is essential for defense of the intestinal mucosa against harmful pathogens. Previous studies have shown that Bacteroidetes, the major phylum of gut microbiota together with Firmicutes, impact IgA production. However, the relative abundances of species of Bacteroidetes responsible for IgA production were not well understood. In the present study, we identified some specific Bacteroidetes species that were associated with gut IgA induction by hsp60-based profiling of species distribution among Bacteroidetes The levels of IgA and the expression of the gene encoding activation-induced cytidine deaminase (AID) in the large intestine lamina propria, which is crucial for class switch recombination from IgM to IgA, were increased in soluble high-fiber diet (sHFD)-fed mice. We found that Bacteroides acidifaciens was the most abundant Bacteroidetes species in both sHFD- and normal diet-fed mice. In addition, the gut IgA levels were associated with the relative abundance of Bacteroides fragilis group species such as Bacteroides faecis, Bacteroides caccae, and Bacteroides acidifaciens Conversely, the ratio of B. acidifaciens to other Bacteroidetes species was reduced in insoluble high-fiber diet fed- and no-fiber diet-fed mice. To investigate whether B. acidifaciens increases IgA production, we generated B. acidifaciens monoassociated mice and found increased gut IgA production and AID expression. Collectively, soluble dietary fiber increases the ratio of gut Bacteroides fragilis group, such as B. acidifaciens, and IgA production. This might improve gut immune function, thereby protecting against bowel pathogens and reducing the incidence of inflammatory bowel diseases.IMPORTANCE Immunoglobulin A (IgA) is essential for defense of the intestinal mucosa against harmful pathogens. Gut microbiota impact IgA production, but the specific species responsible for IgA production remain largely elusive. Previous studies have shown that IgA and Bacteroidetes, the major phyla of gut microbiota, were increased in soluble high-fiber diet-fed mice. We show here that the levels of IgA in the gut and the expression of activation-induced cytidine deaminase (AID) in the large intestine lamina propria, which is crucial for class switch recombination from IgM to IgA, were correlated with the abundance of Bacteroides fragilis group species such as Bacteroides faecis, Bacteroides caccae, and Bacteroides acidifaciens B. acidifaciens monoassociated mice increased gut IgA production and AID expression. Soluble dietary fiber may improve gut immune function, thereby protecting against bowel pathogens and reducing inflammatory bowel diseases.
Project description:CD153 (CD30 ligand) is a member of the TNF ligand/cytokine family expressed on the surface of human B cells. Upon exposure to IL-4, a critical Ig class switch-inducing cytokine, Ag-activated T cells express CD30, the CD153 receptor. The observation that dysregulated IgG, IgA, and/or IgE production is often associated with up-regulation of T cell CD30 prompted us to test the hypothesis that engagement of B cell CD153 by T cell CD30 modulates Ig class switching. In this study, we show that IgD+ IgM+ B cells up-regulate CD153 in the presence of CD154 (CD40 ligand), IL-4, and B cell Ag receptor engagement. In these cells, CD153 engagement by an agonistic anti-CD153 mAb or T cell CD30 inhibits S mu-->Sgamma, Smu-->Salpha, and S mu-->Sepsilon class switch DNA recombination (CSR). This inhibition is associated with decreased TNFR-associated factor-2 binding to CD40, decreased NF-kappaB binding to the CD40-responsive element of the Cgamma3 promoter, decreased Igamma3-Cgamma3 germline gene transcription, and decreased expression of Ku70, Ku80, DNA protein kinase, switch-associated protein-70, and Msh2 CSR-associated transcripts. In addition, CD153 engagement inhibits IgG, IgA, and IgE production, and this effect is associated with reduced levels of B lymphocyte maturation protein-1 transcripts, and increased binding of B cell-specific activation protein to the Ig 3' enhancer. These findings suggest that CD30+ T cells modulate CSR as well as IgG, IgA, and IgE production by inducing reverse signaling through B cell CD153.
Project description:Inflammation and tissue damage in systemic lupus erythematosus (SLE) are mediated by class-switched autoantibodies reactive with nucleic acids, nucleic acid-binding proteins, phospholipids and other self-antigens. While some healthy individuals produce IgM antibodies with specificities similar to those of lupus patients, immunoglobulin class switching to mature downstream isotypes appears to be required for the generation of pathogenic autoantibodies. To characterize the cellular and molecular basis of pathogenic autoantibody production in SLE, we studied the capacity of peripheral blood B cells of naive phenotype from patients with SLE, rheumatoid arthritis (RA) or healthy control subjects to spontaneously switch to IgG and IgA. In addition, we determined the DNA sequences of the upstream evolutionary conserved sequence (ECS)-Igamma promoter regulatory regions that control germline IH-CH transcription and class switch DNA recombination (CSR) to IgG1, IgG2 and IgG4. IgM+IgD+ B cells from patients with SLE, but not those from RA or healthy control subjects, underwent spontaneous CSR, as assessed by expression of germline Igamma1-Cgamma1, Igamma2-Cgamma2, Igamma3-Cgamma3, Igamma4-Cgamma4 and Ialpha1-Calpha1 transcripts, mature (switched) VHDJH-Cgamma1, VHDJH-Cgamma2, VHDJH-Cgamma3 and VHDJH-Calpha1 transcripts and secreted IgG and IgA. Although polymorphic DNA sequences were identified in the ECS-Igamma1, ECS-Igamma2 and ECS-Igamma4 promoter regions, the transcription factor-binding sites that mediate germline Igamma-Cgamma transcription were conserved in patients and controls. However, distinct patterns of nuclear protein binding to an ECS-Igamma promoter sequence that contains both positive and negative regulatory elements were observed in SLE patients and controls. These results support a role for exogenous signals, such as through CD40 ligation, rather than altered genomic sequence, in the increased production of class switched autoantibodies in SLE.