Project description:Rapidly increased studies by third-generation sequencing [Pacific Biosciences (Pacbio) and Oxford Nanopore Technologies (ONT)] have been used in all kinds of research areas. Among them, the plant full-length single-molecule transcriptome studies were most used by Pacbio while ONT was rarely used. Therefore, in this study, we developed ONT RNA-sequencing methods in plants. We performed a detailed evaluation of reads from Pacbio and Nanopore PCR cDNA (ONT Pc) sequencing in plants (Arabidopsis), including the characteristics of raw data and identification of transcripts. We aimed to provide a valuable reference for applications of ONT in plant transcriptome analysis.
Project description:Iso-Seq (PacBio) sequencing was performed to generate a reference library of H. perforatum. We generated genome-wide transcriptome data from in vitro cell suspensions and shoot cultures of H. perforatum.
Project description:Antarctic krill (Euphausia superba) is a high latitude pelagic organism which plays a central role in the Southern Ocean ecosystem. E. superba shows daily and seasonal rhythms in physiology and behaviour, which are synchronized with the environmental cycles of its habitat. Recently, the main components of the krill circadian machinery have been identified and characterized. However, the exact mechanisms through which the endogenous timing system operates the control and regulation of the overt rhythms remains only partially understood. Here we investigate the involvement of the circadian clock in the temporal orchestration of gene expression by using a newly developed version of a krill microarray platform. The analysis of transcriptome data from krill exposed to both light-dark cycles (LD 18:6) and constant darkness (DD), has led to the identification of 1,564 putative clock-controlled genes. A remarkably large proportion of such genes, including several clock components (clock, period, cry2, vrille, and slimb), show oscillatory expression patterns in DD, with a periodicity shorter than 24 hours. Energy-storage pathways appear to be regulated by the endogenous clock in accordance with their ecological relevance in daily energy managing and overwintering. Our results provide the first representation of the krill circadian transcriptome under laboratory, free-running conditions. This SuperSeries is composed of the SubSeries listed below.
Project description:There is accumulating evidence that interfering with the basic aging mechanisms can enhance healthy longevity. Many cellular processes contribute to aging and are referred to as “hallmarks of aging”; by presumption, interventional/therapeutic strategies targeting on multiple ageing hallmarks could be more effective to delay ageing than targeting on one hallmark. While the health-promoting qualities of marine oils have been extensively studied, the underlying molecular mechanisms are not fully understood. Lipid extracts from Antarctic krill are rich in long-chain omega-3 fatty acids (eicosapentaenoic acid/EPA and docosahexaenoic acid/DHA), choline, and astaxanthin. Here, we investigated whether krill oil promotes healthy aging in the small roundworm C. elegans. We show that krill oil rewires distinct gene expression programs that contribute to attenuate several aging hallmarks, including oxidative stress, proteotoxic stress, senescence, genomic instability, and mitochondrial dysfunction. In a C. elegans model of Parkinson´s disease, krill oil protects dopaminergic neurons from aging-related degeneration, decreases alpha synuclein aggregation, and improves dopamine-dependent behavior and cognition. Mechanistically, krill oil increases neuronal resilience through temporal transcriptome rewiring to promote anti-oxidative stress and inflammation via healthspan regulating transcription factors such as SNK-1. However, also krill oil promotes DA neuron survival through regulation of synaptic transmission and neuronal functions via PBO-2 and RIM-1. Collectively, krill oil rewires global gene expression programs and promotes healthy aging via abrogating multiple ageing hallmarks, shedding light on further pre-clinical and clinical explorations.
Project description:We used PacBio data to identify more reliable transcripts from hESC, based on which we can estimate gene/transcript abundance better from Illumina data. PacBio long reads and Illumina short reads were generated from the same hESC cell line H1. PacBio reads were error-corrected by Illumina reads to identify transcripts. rSeq is used to estimate gene/transcript abundance of the identified transcriptome.
Project description:Krill oil is a dietary supplement derived from Antarctic krill; a small crustacean found in the ocean. Krill oil is a rich source of omega-3 fatty acids, specifically eicosapentaenoic acid and docosahexaenoic acid, as well as the antioxidant astaxanthin. The aim of this study was to investigate the effects of krill oil supplementation, compared to placebo oil (high oleic sunflower oil added astaxanthin), in vivo on energy metabolism and substrate turnover in skeletal muscle cells. Skeletal muscle cells (myotubes) were obtained before and after a 7-week krill oil or placebo oil intervention, and glucose and oleic acid metabolism and leucine accumulation, as well as effects of different stimuli in vitro, were studied in the myotubes. In vivo intervention with krill oil increased oleic acid oxidation and leucine accumulation in skeletal muscle cells, however no effects were observed on glucose metabolism. The krill oil-intervention-induced increase in oleic acid oxidation correlated negatively with changes in serum low-density lipoprotein (LDL) concentration. In addition, myotubes were also exposed to krill oil in vitro. The in vitro study revealed that 24 h of krill oil treatment increased both glucose and oleic acid metabolism, enhancing energy substrate utilization. Transcriptomic analysis comparing myotubes obtained before and after krill oil-supplementation identified differentially expressed genes associated with e.g. glycolysis/gluconeogenesis, metabolic pathways and calcium signaling pathway, while proteomic analysis demonstrated upregulation of e.g. LDL-receptor in myotubes obtained after krill oil intervention. These findings suggest that krill oil intervention promotes increased fuel metabolism and protein synthesis in human skeletal muscle cells, with potential implications for metabolic health.