Project description:A taxonomic description of bacteria was deduced from 5.78 Mb metagenomic sequence retrieved from Tulsi Shyam hot spring, India using bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). Metagenome contained 10,893 16S rDNA sequences that were analyzed by MG-RAST server to generate the comprehensive profile of bacteria. Metagenomic data are available at EBI under EBI Metagenomics database with accession no. ERP009559. Metagenome sequences represented the 98.2% bacteria origin, 1.5% of eukaryotic and 0.3% were unidentified. A total of 16 bacterial phyla demonstrating 97 families and 287 species were revealed in the hot spring metagenome. Most abundant phyla were Firmicutes (65.38%), Proteobacteria (21.21%) and unclassified bacteria (10.69%). Whereas, Peptostreptococcaceae (37.33%), Clostridiaceae (23.36%), and Enterobacteriaceae (16.37%) were highest reported families in metagenome. Ubiquitous species were Clostridium bifermentans (17.47%), Clostridium lituseburense (13.93%) and uncultured bacterium (10.15%). Our data provide new information on hot spring bacteria and shed light on their abundance, diversity, distribution and coexisting organisms.
Project description:The Sungai Klah (SK) hot spring is the second hottest geothermal spring in Malaysia. This hot spring is a shallow, 150-m-long, fast-flowing stream, with temperatures varying from 50 to 110°C and a pH range of 7.0-9.0. Hidden within a wooded area, the SK hot spring is continually fed by plant litter, resulting in a relatively high degree of total organic content (TOC). In this study, a sample taken from the middle of the stream was analyzed at the 16S rRNA V3-V4 region by amplicon metagenome sequencing. Over 35 phyla were detected by analyzing the 16S rRNA data. Firmicutes and Proteobacteria represented approximately 57% of the microbiome. Approximately 70% of the detected thermophiles were strict anaerobes; however, Hydrogenobacter spp., obligate chemolithotrophic thermophiles, represented one of the major taxa. Several thermophilic photosynthetic microorganisms and acidothermophiles were also detected. Most of the phyla identified by 16S rRNA were also found using the shotgun metagenome approaches. The carbon, sulfur, and nitrogen metabolism within the SK hot spring community were evaluated by shotgun metagenome sequencing, and the data revealed diversity in terms of metabolic activity and dynamics. This hot spring has a rich diversified phylogenetic community partly due to its natural environment (plant litter, high TOC, and a shallow stream) and geochemical parameters (broad temperature and pH range). It is speculated that symbiotic relationships occur between the members of the community.
Project description:Unkeshwar hot springs are located at geographical South East Deccan Continental basalt of India. Here, we report the microbial community analysis of this hot spring using whole metagenome shotgun sequencing approach. The analysis revealed a total of 848,096 reads with 212.87 Mbps with 50.87% G + C content. Metagenomic sequences were deposited in SRA database with accession number (SUB1242219). Community analysis revealed 99.98% sequences belonging to bacteria and 0.01% to archaea and 0.01% to Viruses. The data obtained revealed 41 phyla including bacteria and Archaea and including 719 different species. In taxonomic analysis, the dominant phyla were found as, Actinobacteria (56%), Verrucomicrobia (24%), Bacteriodes (13%), Deinococcus-Thermus (3%) and firmicutes (2%) and Viruses (2%). Furthermore, functional annotation using pathway information revealed dynamic potential of hot spring community in terms of metabolism, environmental information processing, cellular processes and other important aspects. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of each contig sequence by assigning KEGG Orthology (KO) numbers revealed contig sequences that were assigned to metabolism, organismal system, Environmental Information Processing, cellular processes and human diseases with some unclassified sequences. The Unkeshwar hot springs offer rich phylogenetic diversity and metabolic potential for biotechnological applications.
Project description:Extreme ecosystems such as hot springs are of great interest as a source of novel extremophilic species, enzymes, metabolic functions for survival and biotechnological products. India harbors hundreds of hot springs, the majority of which are not yet explored and require comprehensive studies to unravel their unknown and untapped phylogenetic and functional diversity. The aim of this study was to perform a large-scale metagenomic analysis of three major hot springs located in central India namely, Badi Anhoni, Chhoti Anhoni, and Tattapani at two geographically distinct regions (Anhoni and Tattapani), to uncover the resident microbial community and their metabolic traits. Samples were collected from seven distinct sites of the three hot spring locations with temperature ranging from 43.5 to 98°C. The 16S rRNA gene amplicon sequencing of V3 hypervariable region and shotgun metagenome sequencing uncovered a unique taxonomic and metabolic diversity of the resident thermophilic microbial community in these hot springs. Genes associated with hydrocarbon degradation pathways, such as benzoate, xylene, toluene, and benzene were observed to be abundant in the Anhoni hot springs (43.5-55°C), dominated by Pseudomonas stutzeri and Acidovorax sp., suggesting the presence of chemoorganotrophic thermophilic community with the ability to utilize complex hydrocarbons as a source of energy. A high abundance of genes belonging to methane metabolism pathway was observed at Chhoti Anhoni hot spring, where methane is reported to constitute >80% of all the emitted gases, which was marked by the high abundance of Methylococcus capsulatus. The Tattapani hot spring, with a high-temperature range (61.5-98°C), displayed a lower microbial diversity and was primarily dominated by a nitrate-reducing archaeal species Pyrobaculum aerophilum. A higher abundance of cell metabolism pathways essential for the microbial survival in extreme conditions was observed at Tattapani. Taken together, the results of this study reveal a novel consortium of microbes, genes, and pathways associated with the hot spring environment.
Project description:Jakrem hot water spring is located in the West Khasi Hill District of the state of Meghalaya, and is one of the most popular hot springs of the state. There is a populist belief among the inhabitants and people that the hot spring water has got curative properties against various skin ailments. This is the first report on V3 hyper-variable region of 16S rDNA metagenome sequence employing Illumina platform to profile the microbial community of this less known hot spring from Meghalaya, India. Metagenome comprised of 10, 74,120 raw sequences with a sequence length of 151 bp and 56.35% G + C content. Metagenome sequence information is now available at NCBI, SRA database accession no. SRP056897. A total of 8, 77, 364 pre-processed reads were clustered into 694 OTUs (operational taxonomical units) comprising of 14 bacterial phyla including unknown phylum demonstrating 49 families. Hot spring bacterial community is dominated by Firmicutes (61.60%), Chloroflexi (21.37%), Cyanobacteria (12.96%) and unclassified bacteria (1.2%) respectively.
Project description:16S rRNA deep sequencing analysis, targeting V3 region was performed using Illumina bar coded sequencing. Sediment samples from two hot springs (Atri and Taptapani) were collected. Atri and Taptapani metagenomes were classified into 50 and 51 bacterial phyla. Proteobacteria (45.17%) dominated the Taptapani sample metagenome followed by Bacteriodetes (23.43%) and Cyanobacteria (10.48%) while in the Atri sample, Chloroflexi (52.39%), Nitrospirae (10.93%) and Proteobacteria (9.98%) dominated. A large number of sequences remained taxonomically unresolved in both hot springs, indicating the presence of potentially novel microbes in these two unique habitats thus unraveling the importance of the current study. Metagenome sequence information is now available at NCBI, SRA database accession no. SRP057428.
Project description:Here, we report metagenome from the Tuwa hot spring, India using shotgun sequencing approach. Metagenome consisted of 541,379 sequences with 98.7 Mbps size with 46% G + C content. Metagenomic sequence reads were deposited into the EMBL database under accession number ERP009321. Community analysis presented 99.1% sequences belong to bacteria, 0.3% of eukaryotic origin, 0.2% virus derived and 0.05% from archea. Unclassified and unidentified sequences were 0.4% and 0.07% respectively. A total of 22 bacterial phyla include 90 families and 201 species were observed in the hot spring metagenome. Firmicutes (97.0%), Proteobacteria (1.3%) and Actinobacteria (0.4%) were reported as dominant bacterial phyla. In functional analysis using Cluster of Orthologous Group (COG), 21.5% drops in the poorly characterized group. Using subsystem based annotation, 4.0% genes were assigned for stress responses and 3% genes were fit into the metabolism of aromatic compounds. The hot spring metagenome is very rich with novel sequences affiliated to unclassified and unidentified lineages, suggesting the potential source for novel microbial species and their products.
Project description:BACKGROUND:Himalaya is an ecologically pristine environment. The geo-tectonic activities have shaped various environmental niches with diverse microbial populations throughout the Himalayan biosphere region. Albeit, limited information is available in terms of molecular insights into the microbiome, including the uncultured microbes, of the Himalayan habitat. Hence, a vast majority of genomic resources are still under-explored from this region. Metagenome analysis has simplified the extensive in-depth exploration of diverse habitats. In the present study, the culture-independent whole metagenome sequencing methodology was employed for microbial diversity exploration and identification of genes involved in various metabolic pathways in two geothermal springs located at different altitudes in the Sikkim Himalaya. RESULTS:The two hot springs, Polok and Reshi, have distinct abiotic conditions. The average temperature of Polok and Reshi was recorded to be 62?°C and 43?°C, respectively. Both the aquatic habitats have alkaline geochemistry with pH in the range of 7-8. Community profile analysis revealed genomic evidence of plentiful bacteria, with a minute fraction of the archaeal population in hot water reservoirs of Polok and Reshi hot spring. Mesophilic microbes belonging to Proteobacteria and Firmicutes phyla were predominant at both the sites. Polok exhibited an extravagant representation of Chloroflexi, Deinococcus-Thermus, Aquificae, and Thermotogae. Metabolic potential analysis depicted orthologous genes associated with sulfur, nitrogen, and methane metabolism, contributed by the microflora in the hydrothermal system. The genomic information of many novel carbohydrate-transforming enzymes was deciphered in the metagenomic description. Further, the genomic capacity of antimicrobial biomolecules and antibiotic resistance were discerned. CONCLUSION:The study provided comprehensive molecular information about the microbial treasury as well as the metabolic features of the two geothermal sites. The thermal aquatic niches were found a potential bioresource of biocatalyst systems for biomass-processing. Overall, this study provides the whole metagenome based insights into the taxonomic and functional profiles of Polok and Reshi hot springs of the Sikkim Himalaya. The study generated a wealth of genomic data that can be explored for the discovery and characterization of novel genes encoding proteins of industrial importance.
Project description:The origin and age of opaline silica deposits discovered by the Spirit rover adjacent to the Home Plate feature in the Columbia Hills of Gusev crater remains debated, in part because of their proximity to sulfur-rich soils. Processes related to fumarolic activity and to hot springs and/or geysers are the leading candidates. Both processes are known to produce opaline silica on Earth, but with differences in composition, morphology, texture, and stratigraphy. Here, we incorporate new and existing observations of the Home Plate region with observations from field and laboratory work to address the competing hypotheses. The results, which include new evidence for a hot spring vent mound, demonstrate that a volcanic hydrothermal system manifesting both hot spring/geyser and fumarolic activity best explains the opaline silica rocks and proximal S-rich materials, respectively. The opaline silica rocks most likely are sinter deposits derived from hot spring activity. Stratigraphic evidence indicates that their deposition occurred before the emplacement of the volcaniclastic deposits comprising Home Plate and nearby ridges. Because sinter deposits throughout geologic history on Earth preserve evidence for microbial life, they are a key target in the search for ancient life on Mars.
Project description:Despite the ubiquity of ammonium in geothermal environments and the thermodynamic favorability of aerobic ammonia oxidation, thermophilic ammonia-oxidizing microorganisms belonging to the crenarchaeota kingdom have only recently been described. In this study, we analyzed microbial mats and surface sediments from 21 hot spring samples (pH 3.4 to 9.0; temperature, 41 to 86 degrees C) from the United States, China, and Russia and obtained 846 putative archaeal ammonia monooxygenase large-subunit (amoA) gene and transcript sequences, representing a total of 41 amoA operational taxonomic units (OTUs) at 2% identity. The amoA gene sequences were highly diverse, yet they clustered within two major clades of archaeal amoA sequences known from water columns, sediments, and soils: clusters A and B. Eighty-four percent (711/846) of the sequences belonged to cluster A, which is typically found in water columns and sediments, whereas 16% (135/846) belonged to cluster B, which is typically found in soils and sediments. Although a few amoA OTUs were present in several geothermal regions, most were specific to a single region. In addition, cluster A amoA genes formed geographic groups, while cluster B sequences did not group geographically. With the exception of only one hot spring, principal-component analysis and UPGMA (unweighted-pair group method using average linkages) based on the UniFrac metric derived from cluster A grouped the springs by location, regardless of temperature or bulk water pH, suggesting that geography may play a role in structuring communities of putative ammonia-oxidizing archaea (AOA). The amoA genes were distinct from those of low-temperature environments; in particular, pair-wise comparisons between hot spring amoA genes and those from sympatric soils showed less than 85% sequence identity, underscoring the distinctness of hot spring archaeal communities from those of the surrounding soil system. Reverse transcription-PCR showed that amoA genes were transcribed in situ in one spring and the transcripts were closely related to the amoA genes amplified from the same spring. Our study demonstrates the global occurrence of putative archaeal amoA genes in a wide variety of terrestrial hot springs and suggests that geography may play an important role in selecting different assemblages of AOA.