Project description:A bacterial consortium which rapidly mineralizes benzo[a]pyrene when it is grown on a high-boiling-point diesel fuel distillate (HBD) was recovered from soil and maintained for approximately 3 years. Previous studies have shown that mobilization of benzo[a]pyrene into the supernatant liquid precedes mineralization of this compound (R. Kanaly, R. Bartha, K. Watanabe, and S. Harayama, Appl. Environ. Microbiol. 66:4205-4211, 2000). In the present study, we found that sterilized supernatant liquid filtrate (SSLF) obtained from the growing consortium stimulated mineralization of benzo[a]pyrene when it was readministered to a consortium inoculum without HBD. Following this observation, eight bacterial strains were isolated from the consortium, and SSLF of each of them was assayed for the ability to stimulate benzo[a]pyrene mineralization by the original consortium. The SSLF obtained from one strain, designated BPC1, most vigorously stimulated benzo[a]pyrene mineralization by the original consortium; its effect was more than twofold greater than the effect of the SSLF obtained from the original consortium. A 16S rRNA gene sequence analysis and biochemical tests identified strain BPC1 as a member of the genus Rhodanobacter, whose type strain, Rhodanobacter lindaniclasticus RP5557, which was isolated for its ability to grow on the pesticide lindane, is not extant. Strain BPC1 could not grow on lindane, benzo[a]pyrene, simple hydrocarbons, and HBD in pure culture. In contrast, a competitive PCR assay indicated that strain BPC1 grew in the consortium fed only HBD and benzo[a]pyrene. This growth of BPC1 was concomitant with growth of the total bacterial consortium and preceded the initiation of benzo[a]pyrene mineralization. These results suggest that strain BPC1 has a specialized niche in the benzo[a]pyrene-mineralizing consortium; namely, it grows on metabolites produced by fellow members and contributes to benzo[a]pyrene mineralization by increasing the bioavailability of this compound.
Project description:Sporolactobacillus terrae DSM 11697 is the type strain of S. terrae. Here, we present a 3.2-Mb assembly of its genome sequence. As S. terrae is one of the important lactic acid bacteria, the genome sequence may provide insights into the molecular mechanism for its further microbial investigation.
Project description:Here we present the draft genome sequence of Chrysiogenes arsenatis strain DSM 11915, only the second genome sequence from the phylum Chrysiogenetes. This strictly anaerobic organism was isolated from arsenic-contaminated gold mine wastewater and respires arsenate or nitrate instead of oxygen. The assembly contains 2,824,977 bp in 22 scaffolds.
Project description:In this study, we sequenced the complete genome of the Clostridium difficile type strain DSM 1296(T). A combination of single-molecule real-time (SMRT) and Illumina sequencing technology revealed the presence of one chromosome and two extrachromosomal elements, the bacteriophage phiCDIF1296T and a putative plasmid-like structure harboring genes of another bacteriophage.
Project description:We report the 8.5-Mb genome sequence of Amycolatopsis decaplanina strain DSM 44594(T), isolated from a soil sample from India. The draft genome of strain DSM 44594(T) consists of 8,533,276 bp with a 68.6% G+C content, 7,899 protein-coding genes, and 57 RNAs.
Project description:Gluconobacter oxydans strain DSM 2003 can efficiently produce some industrially important building blocks, such as (R)-lactic acid and (R)-2-hydroxybutyric acid. Here, we present a 2.94-Mb assembly of its genome sequence, which might provide further insights into the molecular mechanism of its biocatalysis in order to further improve its biotechnological applications.
Project description:We report the 9.0-Mb draft genome of Amycolatopsis vancoresmycina strain DSM 44592(T), isolated from Indian soil sample; produces antibiotic vancoresmycin. Draft genome of strain DSM44592T consists of 9,037,069 bp with a G+C content of 71.79% and 8340 predicted protein coding genes and 57 RNAs. RAST annotation indicates that strains Streptomyces sp. AA4 (score 521), Saccharomonospora viridis DSM 43017 (score 400) and Actinosynnema mirum DSM 43827 (score 372) are the closest neighbors of the strain DSM 44592(T).
Project description:Here, we present the first complete genome assembly of the thermophilic bacterium Parageobacillus toebii DSM 14590T The P. toebii DSM 14590T genome consists of a 3,270,071-bp circular chromosome and a 52,989-bp native plasmid.
Project description:Members of the Myxococcales order initiate a developmental program in response to starvation that culminates in formation of spore-filled fruiting bodies. To investigate the genetic basis for fruiting body formation, we present the complete 8.9-Mb genome sequence of Myxococcus macrosporus strain DSM 14697, generated using the PacBio sequencing platform.