Project description:Arenibacter algicola strain SMS7 was isolated from a culture of the marine diatom Skeletonema marinoi strain ST54, sampled from top-layer sediments in Kosterfjord, Sweden. Here, we present its 5,857,781-bp genome, consisting of a circular chromosome and one circular plasmid, in all containing 4,932 coding sequences.
Project description:Polycyclovorans algicola strain TG408 is a recently discovered bacterium associated with marine eukaryotic phytoplankton and exhibits the ability to utilize polycyclic aromatic hydrocarbons (PAHs) almost exclusively as sole sources of carbon and energy. Here, we present the genome sequence of this strain, which is 3,653,213 bp, with 3,477 genes and an average G+C content of 63.8%.
Project description:Cellulophaga algicola Bowman 2000 belongs to the family Flavobacteriaceae within the phylum 'Bacteroidetes' and was isolated from Melosira collected from the Eastern Antarctic coastal zone. The species is of interest because its members produce a wide range of extracellular enzymes capable of degrading proteins and polysaccharides with temperature optima of 20-30°C. This is the first completed genome sequence of a member of the genus Cellulophaga. The 4,888,353 bp long genome with its 4,285 protein-coding and 62 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Project description:Silicimonas algicola strain KC90BT is an alphaproteobacterium of the Roseobacter clade that was isolated from a culture of the marine diatom Thalassiosira delicatula. Here, we report the complete genome sequence of this type strain, which is 4,351,658 bp in size with 4,272 coding sequences and an average G+C content of 65.2%.
Project description:<h4>Unlabelled</h4>Gliding motility is common in members of the phylum Bacteroidetes, including Flavobacterium johnsoniae and Cellulophaga algicola. F. johnsoniae gliding has been extensively studied and involves rapid movement of the cell surface adhesin SprB. Genetic analysis of C. algicola allowed a comparative analysis of gliding. Sixty-three HimarEm1-induced mutants that formed nonspreading colonies were characterized. Each had an insertion in an ortholog of an F. johnsoniae motility gene, highlighting similarities between the motility systems. Differences were also observed. C. algicola lacks orthologs of the F. johnsoniae motility genes gldA, gldF, and gldG that are thought to encode the components of an ATP-binding cassette (ABC) transporter. In addition, mutations in any of 12 F. johnsoniae gld genes result in complete loss of motility, whereas all C. algicola gld mutants retained slight residual motility. This may indicate that C. algicola has multiple motility systems, that the motility proteins exhibit partial redundancy of function, or that essential components of the motility machinery of both C. algicola and F. johnsoniae remain to be discovered.<h4>Importance</h4>The development of genetic tools for C. algicola and comparative analysis of F. johnsoniae and C. algicola motility mutants identified similarities and differences between their gliding motility machineries. Gliding motility is common in the phylum Bacteroidetes Proteins that are important for gliding in both C. algicola and F. johnsoniae are potential core components of the Bacteroidetes gliding motility machinery.