Project description:Thauera aminoaromatica strain MZ1T, an isolate belonging to genus Thauera, of the family Rhodocyclaceae and the class the Betaproteobacteria, has been characterized for its ability to produce abundant exopolysaccharide and degrade various aromatic compounds with nitrate as an electron acceptor. These properties, if fully understood at the genome-sequence level, can aid in environmental processing of organic matter in anaerobic cycles by short-circuiting a central anaerobic metabolite, acetate, from microbiological conversion to methane, a critical greenhouse gas. Strain MZ1T is the first strain from the genus Thauera with a completely sequenced genome. The 4,496,212 bp chromosome and 78,374 bp plasmid contain 4,071 protein-coding and 71 RNA genes, and were sequenced as part of the DOE Community Sequencing Program CSP_776774.
Project description:A polycyclic aromatic hydrocarbon-degrading bacterium designated strain Ca6, a member of the family Rhodocyclaceae and a representative of the uncharacterized pyrene group 1 (PG1), was isolated and its genome sequenced. The presence of several genes suspected to be associated with PG1 was confirmed, and additional genes for aromatic compound metabolism were detected.
Project description:A newly isolated denitrifying bacterium, Thauera sp. strain DNT-1, grew on toluene as the sole carbon and energy source under both aerobic and anaerobic conditions. When this strain was cultivated under oxygen-limiting conditions with nitrate, first toluene was degraded as oxygen was consumed, while later toluene was degraded as nitrate was reduced. Biochemical observations indicated that initial degradation of toluene occurred through a dioxygenase-mediated pathway and the benzylsuccinate pathway under aerobic and denitrifying conditions, respectively. Homologous genes for toluene dioxygenase (tod) and benzylsuccinate synthase (bss), which are the key enzymes in aerobic and anaerobic toluene degradation, respectively, were cloned from genomic DNA of strain DNT-1. The results of Northern blot analyses and real-time quantitative reverse transcriptase PCR suggested that transcription of both sets of genes was induced by toluene. In addition, the tod genes were induced under aerobic conditions, whereas the bss genes were induced under both aerobic and anaerobic conditions. On the basis of these results, it is concluded that strain DNT-1 modulates the expression of two different initial pathways of toluene degradation according to the availability of oxygen in the environment.
Project description:A bacterial strain designated Ca6T was isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated soil from the site of a former manufactured gas plant in Charlotte, NC, USA, and linked phylogenetically to the family Rhodocyclaceae of the class Betaproteobacteria. Its 16S rRNA gene sequence was highly similar to globally distributed environmental sequences, including those previously designated 'Pyrene Group 1' demonstrated to grow on the PAHs phenanthrene and pyrene by stable-isotope probing. The most closely related described relative was Sulfuritalea hydrogenivorans strain sk43HT (93.6?% 16S rRNA gene sequence identity). In addition to a limited number of organic acids, Ca6T was capable of growth on the monoaromatic compounds benzene and toluene, and the azaarene carbazole, as sole sources of carbon and energy. Growth on the PAHs phenanthrene and pyrene was also confirmed. Optimal growth was observed aerobically under mesophilic temperature, neutral pH and low salinity conditions. Major fatty acids present included summed feature 3 (C16?:?1?7c or C16?:?1?6c) and C16?:?0. The DNA G+C content of the single chromosome was 55.14? mol% as determined by complete genome sequencing. Due to its distinct genetic and physiological properties, strain Ca6T is proposed as a member of a novel genus and species within the family Rhodocyclaceae, for which the name Rugosibacter aromaticivorans gen. nov., sp. nov. is proposed. The type strain of the species is Ca6T (=ATCC TSD-59T=DSM 103039T).
Project description:We report here the genome sequence of Thauera sp. strain SWB20, isolated from a Singaporean wastewater treatment facility using gel microdroplets (GMDs) and single-cell genomics (SCG). This approach provided a single clonal microcolony that was sufficient to obtain a 4.9-Mbp genome assembly of an ecologically relevant Thauera species.