Project description:<h4>Background</h4>The swimming crab, Portunus trituberculatus, which is naturally distributed in the coastal waters of Asia-Pacific countries, is an important farmed species in China. Salinity is one of the most important abiotic factors that influence not only the distribution and abundance of crustaceans, it is also an important factor for artificial propagation of the crab. To better understand the interaction between salinity stress and osmoregulation, we performed a transcriptome analysis in the gills of Portunus trituberculatus challenged with salinity stress, using the Illumina Deep Sequencing technology.<h4>Results</h4>We obtained 27,696,835, 28,268,353 and 33,901,271 qualified Illumina read pairs from low salinity challenged (LC), non-challenged (NC), and high salinity challenged (HC) Portunus trituberculatus cDNA libraries, respectively. The overall de novo assembly of cDNA sequence data generated 94,511 unigenes, with an average length of 644 bp. Comparative genomic analysis revealed that 1,705 genes differentially expressed in salinity stress compared to the controls, including 615 and 1,516 unigenes in NC vs LC and NC vs HC respectively. GO functional enrichment analysis results showed some differentially expressed genes were involved in crucial processes related to osmoregulation, such as ion transport processes, amino acid metabolism and synthesis processes, proteolysis process and chitin metabolic process.<h4>Conclusion</h4>This work represents the first report of the utilization of the next generation sequencing techniques for transcriptome analysis in Portunus trituberculatus and provides valuable information on salinity adaptation mechanism. Results reveal a substantial number of genes modified by salinity stress and a few important salinity acclimation pathways, which will serve as an invaluable resource for revealing the molecular basis of osmoregulation in Portunus trituberculatus. In addition, the most comprehensive sequences of transcripts reported in this study provide a rich source for identification of novel genes in the crab.
Project description:<h4>Background</h4>The swimming crab, Portunus trituberculatus, is an important farmed species in China, has been attracting extensive studies, which require more and more genome background knowledge. To date, the sequencing of its whole genome is unavailable and transcriptomic information is also scarce for this species. In the present study, we performed de novo transcriptome sequencing to produce a comprehensive transcript dataset for major tissues of Portunus trituberculatus by the Illumina paired-end sequencing technology.<h4>Results</h4>Total RNA was isolated from eyestalk, gill, heart, hepatopancreas and muscle. Equal quantities of RNA from each tissue were pooled to construct a cDNA library. Using the Illumina paired-end sequencing technology, we generated a total of 120,137 transcripts with an average length of 1037 bp. Further assembly analysis showed that all contigs contributed to 87,100 unigenes, of these, 16,029 unigenes (18.40% of the total) can be matched in the GenBank non-redundant database. Potential genes and their functions were predicted by GO, KEGG pathway mapping and COG analysis. Based on our sequence analysis and published literature, many putative genes with fundamental roles in growth and muscle development, including actin, myosin, tropomyosin, troponin and other potentially important candidate genes were identified for the first time in this specie. Furthermore, 22,673 SSRs and 66,191 high-confidence SNPs were identified in this EST dataset.<h4>Conclusion</h4>The transcriptome provides an invaluable new data for a functional genomics resource and future biological research in Portunus trituberculatus. The data will also instruct future functional studies to manipulate or select for genes influencing growth that should find practical applications in aquaculture breeding programs. The molecular markers identified in this study will provide a material basis for future genetic linkage and quantitative trait loci analyses, and will be essential for accelerating aquaculture breeding programs with this species.
Project description:A high-resolution genetic linkage map is an essential tool for decoding genetics and genomics in non-model organisms. In this study, a linkage map was constructed for the swimming crab (Portunus trituberculatus) with 10,963 markers; as far as we know, this number of markers has never been achieved in any other crustacean. The linkage map covered 98.85% of the whole genome with a mean marker interval of 0.51?cM. The de novo assembly based on genome and transcriptome sequencing data enabled 2,378 explicit annotated markers to be anchored to the map. Quantitative trait locus (QTL) mapping revealed 10 growth-related QTLs with a phenotypic variance explained (PVE) range of 12.0-35.9. Eight genes identified from the growth-related QTL regions, in particular, RE1-silencing transcription factor and RNA-directed DNA polymerase genes with nonsynonymous substitutions, were considered important growth-related candidate genes. We have demonstrated that linkage mapping aided by de novo assembly of genome and transcriptome sequencing could serve as an important platform for QTL mapping and the identification of trait-related genes.
Project description:BACKGROUND:The swimming crab, Portunus trituberculatus, is an important commercial species in China and is widely distributed in the coastal waters of Asia-Pacific countries. Despite increasing interest in swimming crab research, a high-quality chromosome-level genome is still lacking. FINDINGS:Here, we assembled the first chromosome-level reference genome of P. trituberculatus by combining the short reads, Nanopore long reads, and Hi-C data. The genome assembly size was 1.00 Gb with a contig N50 length of 4.12 Mb. In addition, BUSCO assessment indicated that 94.7% of core eukaryotic genes were present in the genome assembly. Approximately 54.52% of the genome was identified as repetitive sequences, with a total of 16,796 annotated protein-coding genes. In addition, we anchored contigs into chromosomes and identified 50 chromosomes with an N50 length of 21.80 Mb by Hi-C technology. CONCLUSIONS:We anticipate that this chromosome-level assembly of the P. trituberculatus genome will not only promote study of basic development and evolution but also provide important resources for swimming crab reproduction.
Project description:MicroRNAs (miRNAs) are small noncoding RNAs that post-transcriptionally regulate gene expression in organisms. To understand the underlying mechanisms behind the molecular response of the crab to low salt-stress, high-throughput Illumina/Solexa deep sequencing technology was used to investigate the expression profiles of miRNAs under low salinity challenged. Two mixed RNA pool libraries of gill tissues from low salinity challenged (LC) and the control groups (NC) were sequenced on the Illumina platform. A total of 6,166,057 and 7,032,973 high-quality reads were obtained from the NC and LC libraries, respectively. Sixty-seven miRNAs consisting of 16 known and 51 novel ones were identified, among which, 12 miRNAs were differentially expressed in LC compared to NC. Thirty-four of the target genes predicted were differentially expressed in the opposite direction to the miRNAs, which were involved in crucial processes related to osmoregulation by gene ontology (GO) functional enrichment analysis, such as anion transport processes (GO:0006820) and chitin metabolic process (GO:0006030). These results provide a basis for further investigation of the miRNA-modulating networks in osmoregulation of Portunus trituberculatus.