Project description:We report here the biosynthesis of daidzein in Streptomyces sp. SS52, its genome sequence and the analysis of its genome for finding putative genes involved in daidzein biosynthesis. The Streptomyces sp. SS52 strain was isolated from the plant Phyllanthus urinaria in Tra Vinh province, Vietnam. This endophytic strain is capable of producing the isoflavone daidzein in the culture medium. Streptomyces sp. SS52 possesses a linear genome of 8,184,045 bp and the GC content of this genome is 72.5%. The preliminary genome analysis identified homologs of genes involved in the de novo biosynthesis of daidzein in the genome of Streptomyces sp. SS52. The genome sequencing of Streptomyces sp. SS52 was essential for the study of the biosynthesis of daidzein in Streptomyces bacteria.
Project description:Streptomyces spp. are robust producers of medicinally-, industrially- and agriculturally-important small molecules. Increased resistance to antibacterial agents and the lack of new antibiotics in the pipeline have led to a renaissance in natural product discovery. This endeavor has benefited from inexpensive high quality DNA sequencing technology, which has generated more than 140 genome sequences for taxonomic type strains and environmental Streptomyces spp. isolates. Many of the sequenced streptomycetes belong to the same species. For instance, Streptomyces albus has been isolated from diverse environmental niches and seven strains have been sequenced, consequently this species has been sequenced more than any other streptomycete, allowing valuable analyses of strain-level diversity in secondary metabolism. Bioinformatics analyses identified a total of 48 unique biosynthetic gene clusters harboured by Streptomyces albus strains. Eighteen of these gene clusters specify the core secondary metabolome of the species. Fourteen of the gene clusters are contained by one or more strain and are considered auxiliary, while 16 of the gene clusters encode the production of putative strain-specific secondary metabolites. Analysis of Streptomyces albus strains suggests that each strain of a Streptomyces species likely harbours at least one strain-specific biosynthetic gene cluster. Importantly, this implies that deep sequencing of a species will not exhaust gene cluster diversity and will continue to yield novelty.
Project description:Antarctic have been suggested as an attractive source for antibiotics discovery and members of Streptomyces genus have historically been studied as natural producers of antimicrobial metabolites. Nonetheless, our knowledge on antibiotic-producing Streptomyces from Antarctic is very limited. In this study, the antimicrobial activity of organic extracts from Antarctic Streptomyces strains was evaluated by disk diffusion assays and minimum inhibitory concentration. The strain Streptomyces sp. So13.3 showed the greatest antibiotic activity (MIC?=?15.6??g/mL) against Gram-positive bacteria and growth reduction of Gram?negative pathogens. The bioactive fraction in the crude extract was revealed by TLC?bioautography at Rf?=?0.78 with molecular weight between 148 and 624?m/z detected by LC-ESI-MS/MS. The strain So13.3 was taxonomically affiliated as Streptomyces fildesensis. Whole genome sequencing and analysis suggested a 9.47?Mb genome size with 42 predicted biosynthetic gene clusters (BGCs) and 56 putative clusters representing a 22% of total genome content. Interestingly, a large number of them (11 of 42 BGCs and 40 of 56 putative BGCs), did not show similarities with other known BGCs. Our results highlight the potential of the Antarctic Streptomyces strains as a promising source of novel antimicrobials, particularly the strain Streptomyces fildesensis So13.3, which first draft genome is reported in this work.
Project description:Streptomyces sp. Tü6071 is a soil-dwelling bacterium which has a highly active isoprenoid biosynthesis. Isoprenoids are important precursors for biopharmaceutical molecules such as antibiotics or anticancer agents, e.g., landomycin. Streptomyces sp. Tü6071 produces the industrially important terpene glycosides phenalinolactones, which have antibacterial activity against several Gram-positive bacteria. The availability of the genome sequence of Streptomyces sp. Tü6071 allows for understanding the biosynthesis of these pharmaceutical molecules and will facilitate rational genome modification to improve industrial use.
Project description:Streptomyces spp. produce many and diverse bioactive metabolites. Plant growth-promoting (PGP) activity by Streptomyces spp. has been reported repeatedly; however, the mechanisms are largely unknown. We report the sequencing of the genome of a PGP endophytic Streptomyces sp. strain, which will contribute to the understanding of the underlying mechanisms for growth promotion.
Project description:In 2003, Streptomyces mexicanus was reported as a novel xylanolytic bacterial species isolated from soil; a partial genome sequence was determined. In 2019, a strain from the same species was isolated from a hand skin swab sample from a healthy French woman. Genome sequencing revealed an 8,011,832-bp sequence with a GC content of 72.5%.
Project description:We report in this article the cytotoxicity of Streptomyces sp. SS1-1 against the human lung cancer A549 cell line, its draft genome sequence and a total of 20 predicted secondary metabolite biosynthetic gene clusters. Streptomyces sp. SS1-1 was an endophytic bacterial strain isolated from the plant Catharanthus roseus in Ho Chi Minh City, Vietnam. When cultured in the PY medium, this strain shows a cytotoxic effect on the A549 cell line. The draft genome of Streptomyces sp. SS1-1 has four contigs of total 7,815,656?bp and the GC content of this genome is 72.2%. AntiSMASH analysis reveals 20 putative biosynthetic gene clusters for the largest contig. The genome sequencing of Streptomyces sp. SS1-1 is essential for the molecular identification of gene cluster(s) responsible for secondary metabolite(s) with cytotoxic activity.
Project description:We report here the draft genome sequence of Streptomyces sp. strain AM-2504, a microorganism producing a broad range of biotechnologically relevant molecules. The comparative analysis of its 16S rRNA sequence allowed the assignment of this strain to the Streptomyces kasugaensis species, thus fostering functional characterization of the secondary metabolites produced by this microorganism.
Project description:Streptomyces sp. strain SGAir0924 was isolated from outdoor air collected in Singapore. Its genome was assembled using long reads generated by single-molecule real-time sequencing. The final assembly had one chromosome of 7.65 Mb and three plasmids with an average length of 142 kb. The genome contained 6,825 protein-coding genes, 68 tRNAs, and 18 rRNAs.
Project description:Streptomyces are a genus of Actinobacteria capable of producing structurally diverse natural products. Here we report the isolation and characterization of a biosynthetically talented Streptomyces (Streptomyces sp. SD85) from tropical mangrove sediments. Whole-genome sequencing revealed that Streptomyces sp. SD85 harbors at least 52 biosynthetic gene clusters (BGCs), which constitute 21.2% of the 8.6-Mb genome. When cultivated under lab conditions, Streptomyces sp. SD85 produces sceliphrolactam, a 26-membered polyene macrolactam with unknown biosynthetic origin. Genome mining yielded a putative sceliphrolactam BGC (sce) that encodes a type I modular polyketide synthase (PKS) system, several β-amino acid starter biosynthetic enzymes, transporters, and transcriptional regulators. Using the CRISPR/Cas9-based gene knockout method, we demonstrated that the sce BGC is essential for sceliphrolactam biosynthesis. Unexpectedly, the PKS system encoded by sce is short of one module required for assembling the 26-membered macrolactam skeleton according to the collinearity rule. With experimental data disfavoring the involvement of a trans-PKS module, the biosynthesis of sceliphrolactam seems to be best rationalized by invoking a mechanism whereby the PKS system employs an iterative module to catalyze two successive chain extensions with different outcomes. The potential violation of the collinearity rule makes the mechanism distinct from those of other polyene macrolactams.