Project description:Several moderately halophilic gram-positive, spore-forming bacteria have been isolated by conventional enrichment cultures from damaged medieval wall paintings and building materials. Enrichment and isolation were monitored by denaturing gradient gel electrophoresis and fluorescent in situ hybridization. 16S ribosomal DNA analysis showed that the bacteria are most closely related to Halobacillus litoralis. DNA-DNA reassociation experiments identified the isolates as a population of hitherto unknown Halobacillus species.
Project description:The draft genome sequence of the halophilic bacterium Halobacillus mangrovi KTB 131, isolated from Topan salt of the Jeon-nam in Korea, was established. The genome comprises 4,151,649 bp, with a G + C content of 41.6%. The strain displays a high number of genes responsible for secondary metabolite biosynthesis, transport, and catabolism compared to other Halobacillus bacterial genus members. Numerous genes responsible for various transport systems, solute accumulation, and aromatic/sulfur decomposition were detected. The first genomic analysis encourages further research on comparative genomics and potential biotechnological applications. The whole draft genome sequence of Halobacillus mangrovi KTB 131 is now available (Bioproject PRJNA380285).
Project description:A novel alanine:glyoxylate aminotransferase was found in a hyperthermophilic archaeon, Thermococcus litoralis. The amino acid sequence of the enzyme did not show a similarity to any alanine:glyoxylate aminotransferases reported so far. Homologues of the enzyme appear to be present in almost all hyperthermophilic archaea whose whole genomes have been sequenced.
Project description:Erythrobacter litoralis has been known as a bacteriochlorophyll a-containing, aerobic, anoxygenic, phototrophic bacterium. Here we announce the complete genome sequence of E. litoralis HTCC2594, which is devoid of phototrophic potential. E. litoralis HTCC2594, isolated by dilution-to-extinction culturing from seawater, could not carry out aerobic anoxygenic phototrophy and lacked genes for bacteriochlorophyll a biosynthesis and photosynthetic reaction center proteins.
Project description:Brown adipose tissue is a major thermogenic organ that plays a key role in maintenance of body temperature and whole-body energy homeostasis. Rev-erb?, a ligand-dependent nuclear receptor and transcription repressor of the molecular clock, has been implicated in the regulation of adipogenesis. However, whether Rev-erb? participates in brown fat formation is not known. Here we show that Rev-erb? is a key regulator of brown adipose tissue development by promoting brown adipogenesis. Genetic ablation of Rev-erb? in mice severely impairs embryonic and neonatal brown fat formation accompanied by loss of brown identity. This defect is due to a cell-autonomous function of Rev-erb? in brown adipocyte lineage commitment and terminal differentiation, as demonstrated by genetic loss- and gain-of-function studies in mesenchymal precursors and brown preadipocytes. Moreover, pharmacological activation of Rev-erb? activity promotes, whereas its inhibition suppresses brown adipocyte differentiation. Mechanistic investigations reveal that Rev-erb? represses key components of the TGF-? cascade, an inhibitory pathway of brown fat development. Collectively, our findings delineate a novel role of Rev-erb? in driving brown adipocyte development, and provide experimental evidence that pharmacological interventions of Rev-erb? may offer new avenues for the treatment of obesity and related metabolic disorders.
Project description:We present the draft genome sequence of Halobacillus sp. BBL2006, a moderately halophilic, gram positive bacterium isolated from a sulfidic salt spring in Big Bone Lick State Park, Boone County, Kentucky. The genome of Halobacillus sp. BBL2006 was 3,988,138?bp in length with a GC content of 41.6%. Genome analysis identified 4331 open reading frames including genes for antibiotic resistance and tolerance to heavy metals. The draft genome was deposited at DDBJ/EMBL/GenBank (DNA Databank of Japan/European Molecular Biology Laboratory/Genbank) (JRNX00000000).
Project description:Strain Marseille-Q1234T is a new species from the genus Halobacillus that was isolated in 2019 from a stool sample in a healthy Malian child <5 years old. Cells are Gram-positive and strictly halophilic bacilli. Strain Marseille-Q1234T exhibits 98.46% 16S rRNA gene sequence similarity to Halobacillus naozhouensis strain JSM 071068T (NR_116505.1), the phylogenetically closely related species with standing in nomenclature. Based on the phenotypic and phylogenetic evidence, OrthoANI values and results of the biochemical tests, the new species is named Halobacillus ihumii sp. nov., for which strain Marseille-Q1234T (= CSURQ1234) is proposed as the type strain.
Project description:The circadian clock acts at the genomic level to coordinate internal behavioural and physiological rhythms via the CLOCK-BMAL1 transcriptional heterodimer. Although the nuclear receptors REV-ERB-? and REV-ERB-? have been proposed to form an accessory feedback loop that contributes to clock function, their precise roles and importance remain unresolved. To establish their regulatory potential, we determined the genome-wide cis-acting targets (cistromes) of both REV-ERB isoforms in murine liver, which revealed shared recognition at over 50% of their total DNA binding sites and extensive overlap with the master circadian regulator BMAL1. Although REV-ERB-? has been shown to regulate Bmal1 expression directly, our cistromic analysis reveals a more profound connection between BMAL1 and the REV-ERB-? and REV-ERB-? genomic regulatory circuits than was previously suspected. Genes within the intersection of the BMAL1, REV-ERB-? and REV-ERB-? cistromes are highly enriched for both clock and metabolic functions. As predicted by the cistromic analysis, dual depletion of Rev-erb-? and Rev-erb-? function by creating double-knockout mice profoundly disrupted circadian expression of core circadian clock and lipid homeostatic gene networks. As a result, double-knockout mice show markedly altered circadian wheel-running behaviour and deregulated lipid metabolism. These data now unite REV-ERB-? and REV-ERB-? with PER, CRY and other components of the principal feedback loop that drives circadian expression and indicate a more integral mechanism for the coordination of circadian rhythm and metabolism.
Project description:BACKGROUND: Roseobacter litoralis OCh149, the type species of the genus, and Roseobacter denitrificans OCh114 were the first described organisms of the Roseobacter clade, an ecologically important group of marine bacteria. Both species were isolated from seaweed and are able to perform aerobic anoxygenic photosynthesis. RESULTS: The genome of R. litoralis OCh149 contains one circular chromosome of 4,505,211 bp and three plasmids of 93,578 bp (pRLO149_94), 83,129 bp (pRLO149_83) and 63,532 bp (pRLO149_63). Of the 4537 genes predicted for R. litoralis, 1122 (24.7%) are not present in the genome of R. denitrificans. Many of the unique genes of R. litoralis are located in genomic islands and on plasmids. On pRLO149_83 several potential heavy metal resistance genes are encoded which are not present in the genome of R. denitrificans. The comparison of the heavy metal tolerance of the two organisms showed an increased zinc tolerance of R. litoralis. In contrast to R. denitrificans, the photosynthesis genes of R. litoralis are plasmid encoded. The activity of the photosynthetic apparatus was confirmed by respiration rate measurements, indicating a growth-phase dependent response to light. Comparative genomics with other members of the Roseobacter clade revealed several genomic regions that were only conserved in the two Roseobacter species. One of those regions encodes a variety of genes that might play a role in host association of the organisms. The catabolism of different carbon and nitrogen sources was predicted from the genome and combined with experimental data. In several cases, e.g. the degradation of some algal osmolytes and sugars, the genome-derived predictions of the metabolic pathways in R. litoralis differed from the phenotype. CONCLUSIONS: The genomic differences between the two Roseobacter species are mainly due to lateral gene transfer and genomic rearrangements. Plasmid pRLO149_83 contains predominantly recently acquired genetic material whereas pRLO149_94 was probably translocated from the chromosome. Plasmid pRLO149_63 and one plasmid of R. denitrifcans (pTB2) seem to have a common ancestor and are important for cell envelope biosynthesis. Several new mechanisms of substrate degradation were indicated from the combination of experimental and genomic data. The photosynthetic activity of R. litoralis is probably regulated by nutrient availability.
Project description:BACKGROUND:Thermococcus litoralis is a heterotrophic facultative sulfur dependent hyperthermophilic Archaeon, which was isolated from a shallow submarine thermal spring. It has been successfully used in a two-stage fermentation system, where various keratinaceous wastes of animal origin were converted to biohydrogen. In this system T. litoralis performed better than its close relative, P. furiosus. Therefore, new alternative enzymes involved in peptide and hydrogen metabolism were assumed in T. litoralis. RESULTS:An about 10.5 kb long genomic region was isolated and sequenced from Thermococcus litoralis. In silico analysis revealed that the region contained a putative operon consisting of eight genes: the fdhAB genes coding for a formate dehydrogenase and the mhyCDEFGH genes encoding a [NiFe] hydrogenase belonging to the group of the H2-evolving, energy-conserving, membrane-bound hydrogenases. Reverse transcription linked quantitative Real-Time PCR and Western blotting experiments showed that the expression of the fdh-mhy operon was up-regulated during fermentative growth on peptides and down-regulated in cells cultivated in the presence of sulfur. Immunoblotting and protein separation experiments performed on cell fractions indicated that the formate dehydrogenase part of the complex is associated to the membrane-bound [NiFe] hydrogenase. CONCLUSION:The formate dehydrogenase together with the membrane-bound [NiFe] hydrogenase formed a formate hydrogenlyase (formate dehydrogenase coupled hydrogenase, FDH-MHY) complex. The expression data suggested that its physiological role is linked to the removal of formate likely generated during anaerobic peptide fermentation.