Project description:One of the most distinct features of Pseudoalteromonas sp. SCSIO 11900 is its ability to form a very robust pellicle than most Pseudoalteromonas strains. Thus we want to identify the genes essential for the pellicle formation of SCSIO 11900. We compared transcriptom profiles of planktonic cells, initial pellicle and mature pellicle of coral Pseudoalteromonas sp. SCSIO 11900 and revealed that some unique genes from horizontal gene transfer is involved in the pellicle formation of SCSIO 11900. Overall design: mRNA profiles of planktonic cells, initial pellicle cells and mature pellicle cells Pseudoalteromonas sp. SCSIO 11900 were generated by Illumina Hiseq2000.
Project description:Members of the marine bacterial genus Pseudoalteromonas are efficient producers of antifouling agents that exert inhibitory effects on the settlement of invertebrate larvae. The production of pigmented secondary metabolites by Pseudoalteromonas has been suggested to play a role in surface colonization. However, the physiological characteristics of the pigments produced by Pseudoalteromonas remain largely unknown. In this study, we identified and characterized a genetic variant that hyperproduces a dark-brown pigment and was generated during Pseudoalteromonas lipolytica biofilm formation. Through whole-genome resequencing combined with targeted gene deletion and complementation, we found that a point mutation within the hmgA gene, which encodes homogentisate 1,2-dioxygenase, is solely responsible for the overproduction of the dark-brown pigment pyomelanin. In P. lipolytica, inactivation of the hmgA gene led to the formation of extracellular pyomelanin and greatly reduced larval settlement and metamorphosis of the mussel Mytilus coruscus. Additionally, the extracted pyomelanin from the hmgA deletion mutant and the in vitro-synthesized pyomelanin also reduced larval settlement and metamorphosis of M. coruscus, suggesting that extracellular pyomelanin released from marine Pseudoalteromonas biofilm can inhibit the settlement of fouling organisms.
Project description:We compared genetic profiles of planktonic stage to biofilm stage of deep sea bacterium Pseudoalteromonas sp. SM9913 and revealed genetic features during switch from planktonic to pellicle stage in Pseudoalteromonas sp. SM9913. mRNA profiles of Pseudoalteromonas sp. SM9913 planktonic cells, initial pellicle cells and mature pellicle cells were generated by Illumina Hiseq2000.
Project description:We present here the complete genome sequences of two newly isolated Pseudoalteromonas tetraodonis and Pseudoalteromonas lipolytica strains, isolated from the gut of the sea cucumber Apostichopus japonicus, to provide a useful means for facilitating the study of antibacterial, bacteriolytic, agarolytic, and algicidal activities of marine Pseudoalteromonas species.
Project description:Although the Escherichia coli expression system is the most commonly used expression system, some proteins are still difficult to be expressed by this system, such as proteins with high thermolability and enzymes that cannot mature by autoprocessing. Therefore, it is necessary to develop alternative expression systems. In this study, a cold-adapted Pseudoalteromonas expression system was developed. A shuttle vector was constructed, and a conjugational transfer system between E. coli and psychrophilic strain Pseudoalteromonas sp. SM20429 was established. Based on the shuttle vector, three reporter vectors were constructed to compare the strength of the cloned promoters at low temperature. The promoter of xylanase gene from Pseudoalteromonas sp. BSi20429 was chosen due to its high activity at 10-15°C. An expression vector pEV containing the chosen promoter, multiple cloning sites and a His tag was constructed for protein expression and purification. With pEV as expression vector and SM20429 as the host, a cold-adapted protease, pseudoalterin, which cannot be maturely expressed in E. coli, was successfully expressed as an active extracellular enzyme when induced by 2% oat spelt xylan at 15°C for 48 h. Recombinant pseudoalterin purified from the culture by Ni affinity chromatography had identical N-terminal sequence, similar molecular mass and substrate specificity as the native pseudoalterin. In addition, another two cold-adapted enzymes were also successfully expressed by this system. Our results indicate that this cold-adapted Pseudoalteromonas expression system will provide an alternative choice for protein expression, especially for the Pseudoalteromonas proteins intractable for the E. coli system.
Project description:The marine genus Pseudoalteromonas is known for its versatile biotechnological potential with respect to the production of antimicrobials and enzymes of industrial interest. We have sequenced the genomes of three Pseudoalteromonas sp. strains isolated from different deep sea sponges on the Illumina MiSeq platform. The isolates have been screened for various industrially important enzymes and comparative genomics has been applied to investigate potential relationships between the isolates and their host organisms, while comparing them to free-living Pseudoalteromonas spp. from shallow and deep sea environments. The genomes of the sponge associated Pseudoalteromonas strains contained much lower levels of potential eukaryotic-like proteins which are known to be enriched in symbiotic sponge associated microorganisms, than might be expected for true sponge symbionts. While all the Pseudoalteromonas shared a large distinct subset of genes, nonetheless the number of unique and accessory genes is quite large and defines the pan-genome as open. Enzymatic screens indicate that a vast array of enzyme activities is expressed by the isolates, including ?-galactosidase, ?-glucosidase, and protease activities. A ?-glucosidase gene from one of the Pseudoalteromonas isolates, strain EB27 was heterologously expressed in Escherichia coli and, following biochemical characterization, the recombinant enzyme was found to be cold-adapted, thermolabile, halotolerant, and alkaline active.
Project description:BACKGROUND: Pseudoalteromonas is an important genus widespread in marine environment, and a lot of psychrophilic Pseudoalteromonas strains thrive in deep sea and polar sea. By now, there are only a few genetic systems for Pseudoalteromonas reported and no commercial Pseudoalteromonas genetic system is available, which impedes the study of Pseudoalteromonas, especially for psychrophilic strains. The aim of this study is to develop a heterologous expression system for psychrophilic Pseudoalteromonas. RESULTS: A cryptic plasmid pSM429 isolated from psychrophilic Pseudoalteromonas sp. BSi20429 from the Arctic sea ice, was sequenced and characterized. The plasmid pSM429 is 3874 bp in length, with a G+C content of 28%. Four putative open reading frames (ORFs) were identified on pSM429. Based on homology, the ORF4 was predicted to encode a replication initiation (Rep) protein. A shuttle vector (Escherichia coli, Pseudoalteromonas), pWD, was constructed by ligating pSM429 and pUC19 and inserting a chloramphenicol acetyl transferase (CAT) cassette conferring chloramphenicol resistance. To determine the minimal replicon of pSM429 and to check the functionality of identified ORFs, various pWD derivatives were constructed. All derivatives except the two smallest ones were shown to allow replication in Pseudoalteromonas sp. SM20429, a plasmid-cured strain of Pseudoalteromonas sp. BSi20429, suggesting that the orf4 and its flanking intergenic regions are essential for plasmid replication. Although not essential, the sequence including some repeats between orf1 and orf2 plays important roles in segregational stability of the plasmid. With the aid of pWD-derived plasmid pWD2, the erythromycin resistance gene and the cd gene encoding the catalytic domain of a cold-adapted cellulase were successfully expressed in Pseudoalteromonas sp. SM20429. CONCLUSIONS: Plasmid pSM429 was isolated and characterized, and the regions essential for plasmid replication and stability were determined, helping the development of pSM429-based shuttle vectors. The shuttle vectors pWD and its derivatives could be used as cloning vectors for Pseudoalteromonas, offering new perspectives in the genetic manipulation of Pseudoalteromonas strains. With the aid of pWD-derived vector and its host, the erythromycin resistance gene and the cd gene of a cold-adapted protein were successfully expressed, indicating that the potential use of this system for recombinant protein production, especially for cold-adapted proteins.
Project description:Marine bacterial isolates cultured from the digestive tracts of blue mussels (Mytilus edulis) contaminated with paralytic shellfish toxins (PSTs) were screened for the ability to reduce the toxicity of a PST mixture. Seven isolates reduced the overall toxicity of the algal extract by > or = 90% within 3 days. These isolates shared at least 99% 16S rRNA gene sequence similarity with five Pseudoalteromonas spp. Phenotypic tests suggested that all are novel strains of Pseudoalteromonas haloplanktis.
Project description:Chitin is the most abundant polymer in the marine environment and a nutrient-rich surface for adhering marine bacteria. We have previously shown that chitin can induce the production of antibiotic compounds in Vibrionaceae, suggesting that the discovery of novel bioactive molecules from bacteria can be facilitated by mimicking their natural habitat. The purpose of this study was to determine the glycosyl hydrolase (GH) profiles of strains of the genus Pseudoalteromonas to enable selection of presumed growth substrates and explore possible links to secondary metabolism. Genomic analyses were conducted on 62 pigmented and 95 nonpigmented strains. Analysis of the total GH profiles and multidimensional scaling suggested that the degradation of chitin is a significant trait of pigmented strains, whereas nonpigmented strains seem to be driven toward the degradation of alga-derived carbohydrates. The genomes of all pigmented strains and 40 nonpigmented strains encoded at least one conserved chitin degradation cluster, and chitinolytic activity was phenotypically confirmed. Additionally, the genomes of all pigmented and a few nonpigmented strains encoded chitinases of the rare GH family 19. Pigmented strains devote up to 15% of their genome to secondary metabolism, while for nonpigmented species it was 3% at most. Thus, pigmented Pseudoalteromonas strains have a bioactive potential similar to that of well-known antibiotic producers of the Actinobacteria phylum. Growth on chitin did not measurably enhance the antibacterial activity of the strains; however, we demonstrated a remarkable co-occurrence of chitin degradation and the potential for secondary metabolite production in pigmented Pseudoalteromonas strains. This indicates that chitin and its colonizers of the Pseudoalteromonas genus represent a so far underexplored niche for novel enzymes and bioactive compounds.IMPORTANCE Infectious bacteria are developing and spreading resistance to conventional treatments at a rapid pace. To provide novel potent antimicrobials, we must develop new bioprospecting strategies. Here, we combined in silico and phenotypic approaches to explore the bioactive potential of the marine bacterial genus Pseudoalteromonas We found that pigmented strains in particular represent an untapped resource of secondary metabolites and that they also harbor an elaborate chitinolytic machinery. Furthermore, our analysis showed that chitin is likely a preferred substrate for pigmented species, in contrast to nonpigmented species. Potentially, chitin could facilitate the production of new secondary metabolites in pigmented Pseudoalteromonas strains.
Project description:The production of pentabromopseudilin and related brominated compounds by Pseudoalteromonas spp. has recently been linked to the bmp biosynthetic gene cluster. This study explored the distribution and evolutionary history of this gene cluster in the genus Pseudoalteromonas. A phylogeny of the genus revealed numerous clades that do not contain type strains, suggesting considerable species level diversity has yet to be described. Comparative genomics revealed four distinct versions of the gene cluster distributed among 19 of the 101 Pseudoalteromonas genomes examined. These were largely localized to the least inclusive clades containing the Pseudoalteromonas luteoviolacea and Pseudoalteromonas phenolica type strains and show clear evidence of gene and gene cluster loss in certain lineages. Bmp gene phylogeny is largely congruent with the Pseudoalteromonas species phylogeny, suggesting vertical inheritance within the genus. However, the gene cluster is found in three different genomic environments suggesting either chromosomal rearrangement or multiple acquisition events. Bmp conservation within certain lineages suggests the encoded products are highly relevant to the ecology of these bacteria.