Project description:G-quadruplex (G4) is a non-canonical DNA structure that has been found in the genome. To identify clusters of G4-forming sequences in the genome, we performed whole genome amplification (WGA) in the presence or absence of a G4 ligand that inhibits DNA polymerase activity on the G4 forming regions, followed by high-throughput sequencing of the WGA products. As the results, 12254 G4 cultures were identified on HeLa genomic DNA.
Project description:G-quadruplexes are nucleic acids structures stabilized by physiological concentration of potassium ions. Because low stability G-quadruplexes are hardly detectable by mass spectrometry, we optimized solvent conditions: isopropanol in a triethylamine/hexafluoroisopropanol mixture highly increased G-quadruplex sensitivity with no modification of the physiological G-quadruplex conformation. G-quadruplexes/G-quadruplex-ligand complexes were also correctly detected at concentration as low as 40 nM. Detection of the physiological conformation of G4s and their complexes opens up the possibility to perform high-throughput screening of G-quadruplex ligands for the development of drug molecules effective against critical human diseases.
Project description:The identification of DNA G-quadruplexes (G4s) in the genome is important to study different biological processes in which these structures play a role, such as genome rearrangement, transcriptional regulation and DNA replication. G4-seq allowed the high-throughput experimental mapping of G-quadruplexes in the human genome. We developed here an improved version of this method, named G4-seq2, which we applied to generate G-quadruplexes genomic maps for 12 species, selected as important models organism to study development or as pathogens of clinical relevance. Those multi-species maps, publicly available for the community, will allow to further understand the design principle of G-quadruplex formation in genomic context, to study G-quadruplex biology in those model organisms, to predict ligand targeting for therapeutic usage and to design G-quadruplex computational predictors based on genome-wide experimental measurements. Overall design: 24 library samples, 150 base pairs custom protocol (G4-Seq2) sequenced as two-times single-end reads on HiSeq 2500: 12 samples from different species for Li+ (Read-1) and K+ (Read-2); 12 samples from different species for Li+ (Read-1) and PDS+K+ (Read-2).
Project description:Guanine-rich nucleic acids can fold into G-quadruplexes, secondary structures implicated in important regulatory functions at the genomic level in humans, prokaryotes and viruses. The remarkably high guanine content of the Herpes Simplex Virus-1 (HSV-1) genome prompted us to investigate both the presence of G-quadruplex forming sequences in the viral genome and the possibility to target them with G-quadruplex ligands to obtain anti-HSV-1 effects with a novel mechanism of action. Using biophysical, molecular biology and antiviral assays, we showed that the HSV-1 genome displays multiple clusters of repeated sequences that form very stable G-quadruplexes. These sequences are mainly located in the inverted repeats of the HSV-1 genome. Treatment of HSV-1 infected cells with the G-quadruplex ligand BRACO-19 induced inhibition of virus production. BRACO-19 was able to inhibit Taq polymerase processing at G-quadruplex forming sequences in the HSV-1 genome, and decreased intracellular viral DNA in infected cells. The last step targeted by BRACO-19 was viral DNA replication, while no effect on virus entry in the cells was observed. This work, presents the first evidence of extended G-quadruplex sites in key regions of the HSV-1 genome, indicates the possibility to block viral DNA replication by G-quadruplex-ligand and therefore provides a proof of concept for the use of G-quadruplex ligands as new anti-herpetic therapeutic options.
Project description:G-quadruplex has attracted considerable attention due to their prevalent distribution in functional genomic regions and transcripts, which can importantly influence biological processes such as regulation of telomere maintenance, gene transcription and gene translation. Artificial receptor study has been developed for accurate identification of G-quadruplex from DNA species, since it is important for the G-quadruplex related basic research, clinical diagnosis, and therapy. Herein, fluorescent dye ThT-E, a derivative of the known fluorescence probe Thioflavin T (ThT), was designed and synthesized to effectively differentiate various G-quadruplex structures from other nucleic acid forms. Compared with methyl groups in ThT, three ethyl groups were introduced to ThT-E, which leads to strengthened affinity, selectivity and little inducing effect on the G-quadruplex formation. More importantly, ThT-E could be served as a visual tool to directly differentiate G-quadruplex solution even with naked eyes under illumination of ultraviolet light. Thus, this probe reported herein may hold great promise for high-throughput assay to screen G-quadruplex, which may widely apply to G-quadruplex-based potential diagnosis and therapy.
Project description:This work presents an amplified colorimetric biosensor for circulating tumor DNA (ctDNA), which associates the hybridization chain reaction (HCR) amplification with G-Quadruplex DNAzymes activity through triplex DNA formation. In the presence of ctDNA, HCR occurs. The resulting HCR products are specially recognized by one sequence to include one GGG repeat and the other containing three GGG repeats, through the synergetic effect of triplex DNA and asymmetrically split G-Quadruplex forming. Such design takes advantage of the amplification property of HCR and the high peroxidase-like catalytic activity of asymmetrically split G-Quadruplex DNAzymes by means of triplex DNA formation, which produces color signals in the presence of ctDNA. Nevertheless, in the absence of ctDNA, no HCR happens. Thus, no triplex DNA and G-Quadruplex structure is formed, producing a negligible background. The colorimetric sensing platform is successfully applied in complex biological environments such as human blood plasma for ctDNA detection, with a detection limit corresponding to 0.1 pM. This study unambiguously uses triplex DNA forming as the pivot to integrate nucleic acid amplification and DNAzymes for producing a highly sensitive signal with low background.
Project description:An important unresolved issue in microbial secondary metabolite production is the abundance of biosynthetic gene clusters that are not expressed under typical laboratory growth conditions. These so-called silent or cryptic gene clusters are sources of new natural products, but how they are silenced, and how they may be rationally activated are areas of ongoing investigation. We recently devised a chemogenetic high-throughput screening approach ("HiTES") to discover small molecule elicitors of silent biosynthetic gene clusters. This method was successfully applied to a Gram-negative bacterium; it has yet to be implemented in the prolific antibiotic-producing streptomycetes. Herein we have developed a high-throughput transcriptional assay format in Streptomyces spp. by leveraging eGFP, inserted both at a neutral site and inside the biosynthetic cluster of interest, as a read-out for secondary metabolite synthesis. Using this approach, we successfully used HiTES to activate a silent gene cluster in Streptomyces albus J1074. Our results revealed the cytotoxins etoposide and ivermectin as potent inducers, allowing us to isolate and structurally characterize 14 novel small molecule products of the chosen cluster. One of these molecules is a novel antifungal, while several others inhibit a cysteine protease implicated in cancer. Studies addressing the mechanism of induction by the two elicitors led to the identification of a pathway-specific transcriptional repressor that silences the gene cluster under standard growth conditions. The successful application of HiTES will allow future interrogations of the biological regulation and chemical output of the countless silent gene clusters in Streptomyces spp.
Project description:A375 and HT1080 cells are treated with G-quadruplex ligands PDS or PhenDC3 following genome-wide shRNA knockdown. This enables the identification of genes that when silenced, specifically compromises cell growth in the presence of the ligand. First, a pilot screen was performed to determine a ligand concentration and experimental duration that caused ligand-specific, significant changes in shRNA levels. Second, a genome-wide screen was performed to globally evaluate G4-ligand synthetic lethal interactions. Third, to corroborate the G4-sensitisers uncovered in the genome-wide screen, a focussed screen was performed with a custom shRNA pool.
Project description:YES G-rich oligonucleotide VK2 folds into an AGCGA-quadruplex tetrahelical structure distinct and significantly different from G-quadruplexes, even though it contains four G3 tracts. Herein, a bis-quinolinium ligand 360A with high affinity for G-quadruplex structures and selective telomerase inhibition is shown to strongly bind to VK2. Upon binding, 360A does not induce a conformational switch from VK2 to an expected G-quadruplex. In contrast, NMR structural study revealed formation of a well-defined VK2-360A complex with a 1:1 binding stoichiometry, in which 360A intercalates between GAGA- and GCGC-quartets in the central cavity of VK2. This is the first high-resolution structure of a G-quadruplex ligand intercalating into a G-rich tetrahelical fold. This unique mode of ligand binding into tetrahelical DNA architecture offers insights into the stabilization of an AGCGA-quadruplex by a heterocyclic ligand and provides guidelines for rational design of novel VK2 binding molecules with selectivity for different DNA secondary structures.
Project description:Specific guanine-rich regions in human genome can form higher-order DNA structures called G-quadruplexes, which regulate many relevant biological processes. For instance, the formation of G-quadruplex at telomeres can alter cellular functions, inducing apoptosis. Thus, developing small molecules that are able to bind and stabilize the telomeric G-quadruplexes represents an attractive strategy for antitumor therapy. An example is 3-(benzo[d]thiazol-2-yl)-7-hydroxy-8-((4-(2-hydroxyethyl)piperazin-1-yl)methyl)-2H-chromen-2-one (compound 1: ), recently identified as potent ligand of the G-quadruplex [d(TGGGGT)]4 with promising in vitro antitumor activity. The experimental observations are suggestive of a complex binding mechanism that, despite efforts, has defied full characterization. Here, we provide through metadynamics simulations a comprehensive understanding of the binding mechanism of 1: to the G-quadruplex [d(TGGGGT)]4. In our calculations, the ligand explores all the available binding sites on the DNA structure and the free-energy landscape of the whole binding process is computed. We have thus disclosed a peculiar hopping binding mechanism whereas 1: is able to bind both to the groove and to the 3' end of the G-quadruplex. Our results fully explain the available experimental data, rendering our approach of great value for further ligand/DNA studies.