Project description:Pseudomonas sp. strain M1 is a soil isolate with remarkable biotechnological potential. The genome of Pseudomonas sp. M1 was sequenced using both 454 and Illumina technologies. A customized genome assembly pipeline was used to reconstruct its genome sequence to a single scaffold.
Project description:Pseudomonas sp. M1 is able to mineralize several unusual substrates of natural and xenobiotic origin, contributing to its competence to thrive in different ecological niches. In this work, the genome of M1 strain was resequenced by Illumina MiSeq to refine the quality of a published draft by resolving the majority of repeat-rich regions. In silico genome analysis led to the prediction of metabolic pathways involved in biotransformation of several unusual substrates (e.g., plant-derived volatiles), providing clues on the genomic complement required for such biodegrading/biotransformation functionalities. Pseudomonas sp. M1 exhibits a particular sensory and biotransformation/biocatalysis potential toward ?-myrcene, a terpene vastly used in industries worldwide. Therefore, the genomic responsiveness of M1 strain toward ?-myrcene was investigated, using an RNA sequencing approach. M1 cells challenged with ?-myrcene(compared with cells grown in lactate) undergo an extensive alteration of the transcriptome expression profile, including 1,873 genes evidencing at least 1.5-fold of altered expression (627 upregulated and 1,246 downregulated), toward ?-myrcene-imposed molecular adaptation and cellular specialization. A thorough data analysis identified a novel 28-kb genomic island, whose expression was strongly stimulated in ?-myrcene-supplemented medium, that is essential for ?-myrcene catabolism. This island includes ?-myrcene-induced genes whose products are putatively involved in 1) substrate sensing, 2) gene expression regulation, and 3) ?-myrcene oxidation and bioconversion of ?-myrcene derivatives into central metabolism intermediates. In general, this locus does not show high homology with sequences available in databases and seems to have evolved through the assembly of several functional blocks acquired from different bacteria, probably, at different evolutionary stages.
Project description:Pseudomonas sp. strain SGAir0191 was isolated from an air sample collected in Singapore, and its genome was sequenced using a combination of long and short reads to generate a high-quality genome assembly. The complete genome is approximately 5.07?Mb with 4,370 protein-coding genes, 19 rRNAs, and 73 tRNAs.
Project description:Many of the soil-dwelling Pseudomonas species are known to produce secondary metabolite compounds, which can have antagonistic activity against other microorganisms, including important plant pathogens. It is thus of importance to isolate new strains of Pseudomonas and discover novel or rare gene clusters encoding bioactive products. In an effort to accomplish this, we have isolated a bioactive Pseudomonas strain DTU12.1 from leaf-covered soil in Denmark. Following genome sequencing with Illumina and Oxford Nanopore technologies, we generated a complete genome sequence with the length of 5,943,629 base pairs. The DTU12.1 strain contained a complete gene cluster for a rare thioquinolobactin siderophore, which was previously described as possessing bioactivity against oomycetes and several fungal species. We placed the DTU12.1 strain within Pseudomonas gessardii subgroup of fluorescent pseudomonads, where it formed a distinct clade with other Pseudomonas strains, most of which also contained a complete thioquinolobactin gene cluster. Only two other Pseudomonas strains were found to contain the gene cluster, though they were present in a different phylogenetic clade and were missing a transcriptional regulator of the whole cluster. We show that having the complete genome sequence and establishing phylogenetic relationships with other strains can enable us to start evaluating the distribution and evolutionary origins of secondary metabolite clusters.
Project description:Pseudomonas sp. strain CK-NBRI-02 is a potential plant growth-promoting Gram-negative rhizobacterium isolated from the rhizosphere of maize plants growing in fields in Srinagar, Jammu, and Kashmir, India. Here, we report a 5.25-Mb draft assembly of the genome sequence of Pseudomonas sp. strain CK-NBRI-02 with an average G+C content of 62.47%.
Project description:Bacteria have evolved several defense systems against phage predation. Here, we report the 6,500,439-bp complete genome sequence of the Pseudomonas aeruginosa phage-resistant variant PA1RG. Single-molecule real-time (SMRT) sequencing and de novo assembly revealed a single contig with 320-fold sequence coverage.
Project description:We report the 6,498,072-bp complete genome sequence of Pseudomonas aeruginosa PA1, which was isolated from a patient with a respiratory tract infection in Chongqing, People's Republic of China. Whole-genome sequencing was performed using single-molecule real-time (SMRT) technology, and de novo assembly revealed a single contig with 396-fold sequence coverage.