Project description:<i>Boechera stricta</i> (<i>B. stricta</i>) is a wild relative of Arabidopsis, occurring in mostly montane regions of western North America. In this article, we assembled the complete mitochondrial (mt) DNA sequence of <i>B. stricta</i> into a circular genome of length 271,601?bp, including 31 protein-coding genes, 21 tRNA genes, and 3 rRNA genes. From the neighbour-joining phylogenetic tree was constructed, based on the 23 conserved protein-coding genes of <i>B. stricta</i> and other 23 plant species, and the phylogenic relationship and evolution position of <i>B. stricta</i> were determined. The complete mt genome would be useful for further investigation of the genotype-by-environment interactions in mitochondria of <i>Boechera</i>.
Project description:The expression of 30362 plant genes from uninfected flowers of Boechera stricta, uninfected steam and leaves of B. stricta and infected B. stricta with Puccinia monoica forming pseudoflowers. We hybridized cDNA from each sample to an Arabidopsis thaliana gene expression 4x72K format NimbleGen array (ATH6_60mer_expr). We used a eukaryotic gene expression array design No.5048 from NimbleGen (Cat No. A4511001-00-01). Each 5048 array measures the expression level of 30,362 target genes from Arabidopsis thaliana in a 4-plex format 4x72K with with 72,000 probes per array, a total of two probes per target gene, and 60-mer probe length. Total RNA samples recovered from infected leaves of Boechera stricta with Puccinia monoica (pseudoflowers) and uninfected stem and leaves of B. stricta. Experiments included three/two biological repllicates from each sample. We carried out total RNA extractions for all samples using RNAesy Plant Mini Kit (Qiagen, Cat No. 74904). cDNA synthesis was performed by NimbleGen.
Project description:Background and aims:In the Brassicaceae family, apomictic development is characteristic of the genus Boechera. Hybridization, polyploidy and environmental adaptation that arose during the evolution of Boechera may serve as (epi)genetic regulators of apomictic initiation in this genus. Here we focus on Boechera stricta, a predominantly diploid species that reproduces sexually. However, apomictic development in this species has been reported in several studies, indicating non-obligate sexuality. Methods:A progressive investigation of flower development was conducted using three accessions to assess the reproductive system of B. stricta. We employed molecular and cyto-embryological identification using histochemistry, transmission electron microscopy and Nomarski and epifluorescence microscopy. Key Results:Data from internal transcribed spacer (ITS) and chloroplast haplotype sequencing, in addition to microsatellite variation, confirmed the B. stricta genotype for all lines. Embryological data indicated irregularities in sexual reproduction manifested by heterochronic ovule development, longevity of meiocyte and dyad stages, diverse callose accumulation during meiocyte-to-gametophyte development, and the formation of triads and tetrads in several patterns. The arabinogalactan-related sugar epitope recognized by JIM13 immunolocalized to one or more megaspores. Furthermore, pollen sterility and a high frequency of seed abortion appeared to accompany reproduction of the accession ES512, along with the initiation of parthenogenesis. Data from flow cytometric screening revealed both sexual and apomictic seed formation. Conclusion:These results imply that B. stricta is a species with an underlying ability to initiate apomixis, at least with respect to the lines examined here. The existence of apomixis in an otherwise diploid sexual B. stricta may provide the genomic building blocks for establishing highly penetrant apomictic diploids and hybrid relatives. Our findings demonstrate that apomixis per se is a variable trait upon which natural selection could act.
Project description:The expression of 30362 plant genes from uninfected flowers of Boechera stricta, uninfected steam and leaves of B. stricta and infected B. stricta with Puccinia monoica forming pseudoflowers. We hybridized cDNA from each sample to an Arabidopsis thaliana gene expression 4x72K format NimbleGen array (ATH6_60mer_expr).
Project description:Information about polymorphism, population structure, and linkage disequilibrium (LD) is crucial for association studies of complex trait variation. However, most genomewide studies have focused on model systems, with very few analyses of undisturbed natural populations. Here, we sequenced 86 mapped nuclear loci for a sample of 46 genotypes of Boechera stricta and two individuals of B. holboellii, both wild relatives of Arabidopsis. Isolation by distance was significant across the species range of B. stricta, and three geographic groups were identified by structure analysis, principal coordinates analysis, and distance-based phylogeny analyses. The allele frequency spectrum indicated a genomewide deviation from an equilibrium neutral model, with silent nucleotide diversity averaging 0.004. LD decayed rapidly, declining to background levels in approximately 10 kb or less. For tightly linked SNPs separated by <1 kb, LD was dependent on the reference population. LD was lower in the specieswide sample than within populations, suggesting that low levels of LD found in inbreeding species such as B. stricta, Arabidopsis thaliana, and barley may result from broad geographic sampling that spans heterogeneous genetic groups. Finally, analyses also showed that inbreeding B. stricta and A. thaliana have approximately 45% higher recombination per kilobase than outcrossing A. lyrata.
Project description:The expression of 30362 plant genes from uninfected flowers of Boechera stricta, uninfected steam and leaves of B. stricta and infected B. stricta with Puccinia monoica forming pseudoflowers. We hybridized cDNA from each sample to an Arabidopsis thaliana gene expression 4x72K format NimbleGen array (ATH6_60mer_expr). We used a eukaryotic gene expression array design No.5048 from NimbleGen (Cat No. A4511001-00-01). Each 5048 array measures the expression level of 30,362 target genes from Arabidopsis thaliana in a 4-plex format 4x72K with with 72,000 probes per array, a total of two probes per target gene, and 60-mer probe length. Total RNA samples recovered from infected leaves of Boechera stricta with Puccinia monoica (pseudoflowers) and uninfected stem and leaves of B. stricta. Experiments included three/two biological repllicates from each sample. We carried out total RNA extractions for all samples using RNAesy Plant Mini Kit (Qiagen, Cat No. 74904). cDNA synthesis was performed by NimbleGen.
Project description:<h4>Background</h4>Genomic variation is widespread, and both neutral and selective processes can generate similar patterns in the genome. These processes are not mutually exclusive, so it is difficult to infer the evolutionary mechanisms that govern population and species divergence. Boechera stricta is a perennial relative of Arabidopsis thaliana native to largely undisturbed habitats with two geographic and ecologically divergent subspecies. Here, we delineate the evolutionary processes driving the genetic diversity and population differentiation in this species.<h4>Results</h4>Using whole-genome re-sequencing data from 517 B. stricta accessions, we identify four genetic groups that diverged around 30-180 thousand years ago, with long-term small effective population sizes and recent population expansion after the Last Glacial Maximum. We find three genomic regions with elevated nucleotide diversity, totaling about 10% of the genome. These three regions of elevated nucleotide diversity show excess of intermediate-frequency alleles, higher absolute divergence (d<sub>XY</sub>), and lower relative divergence (F<sub>ST</sub>) than genomic background, and significant enrichment in immune-related genes, reflecting long-term balancing selection. Scattered across the genome, we also find regions with both high F<sub>ST</sub> and d<sub>XY</sub> among the groups, termed F<sub>ST</sub>-islands. Population genetic signatures indicate that F<sub>ST</sub>-islands with elevated divergence, which have experienced directional selection, are derived from divergent sorting of ancient polymorphisms.<h4>Conclusions</h4>Our results suggest that long-term balancing selection on disease resistance genes may have maintained ancestral haplotypes across different geographical lineages, and unequal sorting of balanced polymorphisms may have generated genomic regions with elevated divergence. This study highlights the importance of ancestral balanced polymorphisms as crucial components of genome-wide variation.