Project description:Soil populations of bacteria rapidly degrading atrazine are critical to the environmental fate of the herbicide. An enrichment bias from the routine isolation procedure prevents studying the diversity of atrazine degraders. In the present work, we analyzed the occurrence, diversity and community structure of soil atrazine-degrading bacteria based on their direct isolation.Atrazine-degrading bacteria were isolated by direct plating on a specially developed SM agar. The atrazine degradation genes trzN and atzABC were detected by multiplex PCR. The diversity of atrazine degraders was characterized by enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) genotyping followed by 16S rRNA gene phylogenetic analysis. The occurrence of atrazine-degrading bacteria was also assessed by conventional PCR targeting trzN and atzABC in soil DNA.A total of 116 atrazine-degrading isolates were recovered from bulk and rhizosphere soils sampled near an atrazine factory and from geographically distant maize fields. Fifteen genotypes were distinguished among 56 industrial isolates, with 13 of them representing eight phylogenetic groups of the genus Arthrobacter. The remaining two were closely related to Pseudomonas alcaliphila and Gulosibacter molinativorax and constituted major components of the atrazine-degrading community in the most heavily contaminated industrial plantless soil. All isolates from the adjacent sites inhabited by cogon grass or common reed were various Arthrobacter spp. with a strong prevalence of A. aurescens group. Only three genotypes were distinguished among 60 agricultural strains. Genetically similar Arthrobacter ureafaciens bacteria which occurred as minor inhabitants of cogon grass roots in the industrial soil were ubiquitous and predominant atrazine degraders in the maize rhizosphere. The other two genotypes represented two distant Nocardioides spp. that were specific to their geographic origins.Direct plating on SM agar enabled rapid isolation of atrazine-degrading bacteria and analysis of their natural diversity in soil. The results obtained provided evidence that contaminated soils harbored communities of genetically distinct bacteria capable of individually degrading and utilizing atrazine. The community structures of culturable atrazine degraders were habitat-specific. Bacteria belonging to the genus Arthrobacter were the predominant degraders of atrazine in the plant rhizosphere.
Project description:Most components of petroleum oily sludge (POS) are toxic, mutagenic and cancer-causing. Often bioremediation using microorganisms is hindered by the toxicity of POS. Under this circumstance, phytoremediation is the main option as it can overcome the toxicity of POS. Cajanus cajan a legume plant, was evaluated as a phyto-remediating agent for petroleum oily sludge-spiked soil. Culture dependent and independent methods were used to determine the rhizosphere microorganisms' composition. Degradation rates were estimated gravimetrically. The population of total heterotrophic bacteria (THRB) was significantly higher in the uncontaminated soil compared to the contaminated rhizosphere soil with C. cajan, but the population of hydrocarbon-utilizing bacteria (HUB) was higher in the contaminated rhizosphere soil. The results show that for 1 to 3% oily sludge concentrations, an increase in microbial counts for all treatments from day 0 to 90 d was observed with the contaminated rhizosphere CR showing the highest significant increase (p ?<?0.05) in microbial counts compared to other treatments. The metagenomic study focused on the POS of 3% (w/w) and based on the calculated bacterial community abundance indices showed an increase in the values for Ace, Cho, Shannon (Shannon-Weaver) and the Simpson's (measured as InvSimpson) indices in CR3 compared to CN3. Both the Simpson's and the Shannon values for CR3 were higher than CN3 indicating an increase in diversity upon the introduction of C. cajan into the contaminated soil. The PCoA plot revealed community-level differences between the contaminated non-rhizosphere control and contaminated rhizosphere microbiota. The PCoA differentiated the two treatments based on the presence or absence of plant. The composition and taxonomic analysis of microbiota-amplified sequences were categorized into eight phyla for the contaminated non-rhizosphere and ten phyla for the contaminated rhizosphere. The overall bacterial composition of the two treatments varied, as the distribution shows a similar variation between the two treatments in the phylum distribution. The percentage removal of total petroleum hydrocarbon (TPH) after 90 days of treatments with 1, 2, 3, 4, and 5% (w/w) of POS were 92, 90, 89, 68.3 and 47.3%, respectively, indicating removal inhibition at higher POS concentrations. As the search for more eco-friendly and sustainable remediating green plant continues, C. cajan shows great potential in reclaiming POS contaminated soil. Our findings will provide solutions to POS polluted soils and subsequent re-vegetation.
Project description:Our previous research found that culturable atrazine degraders associated with maize roots were dominated by genetically similar strains of Arthrobacter ureafaciens, suggesting their rhizosphere competence. The present study aimed to assess the root-colonizing capacity of strain A. ureafaciens DnL1-1 and to evaluate consequent root-associated degradation of atrazine. A soil-sand assay and pot experiments provided evidence that A. ureafaciens DnL1-1 competitively colonized roots of maize, wheat, and alfalfa following seed inoculation. Atrazine was not absolutely required but promoted colonization of plant roots by the bacterium. In association with plants, A. ureafaciens DnL1-1 enhanced the degradation of atrazine and strongly reduced accumulation of its dealkylated metabolites. Our results show that after low-level inoculation of seeds, the bacterium A. ureafaciens DnL1-1 can establish root populations sufficient for the rapid degradation of atrazine in soil that makes it a promising bioremediation agent which can be easily applied to large areas of polluted soil. Application of the root-colonizing, atrazine-degrading Arthrobacter bacteria as seed inoculants may be a reliable remediation strategy for soils contaminated with chlorinated s-triazines and their degradation products.
Project description:Fifteen fungi were obtained from arsenic-contaminated agricultural fields in West Bengal, India and examined for their arsenic tolerance and removal ability in our previous study. Of these, the four best arsenic-remediating isolates were tested for plant growth promotion effects on rice and pea in the present study. A greenhouse-based pot experiment was conducted using soil inocula of individual fungi. The results indicated a significant (P<0.05) increase in plant growth and improvement of soil properties in inoculated soils compared to the control. A significant increase in plant growth was recorded in treated soils and varied from 16-293%. Soil chemical and enzymatic properties varied from 20-222% and 34-760%, respectively, in inoculated soil. Plants inoculated with inocula of Westerdykella and Trichoderma showed better stimulatory effects on plant growth and soil nutrient availability than Rhizopus and Lasiodiplodia. These fungi improved soil nutrient content and enhanced plant growth. These fungi may be used as bioinoculants for plant growth promotion and improved soil properties in arsenic-contaminated agricultural soils.
Project description:In soil, the way biotic parameters impact the relationship between bacterial diversity and function is still unknown. To understand these interactions better, we used RNA-based stable-isotope probing to study the diversity of active atrazine-degrading bacteria in relation to atrazine degradation and to explore the impact of earthworm-soil engineering with respect to this relationship. Bulk soil, burrow linings and earthworm casts were incubated with (13)C-atrazine. The pollutant degradation was quantified by liquid chromatography-mass spectrometry for 8 days, whereas active atrazine degraders were identified at 2 and 8 days by sequencing the 16S ribosomal RNA in the (13)C-RNA fractions from the three soil microsites. An original diversity of atrazine degraders was found. Earthworm soil engineering greatly modified the taxonomic composition of atrazine degraders with dominance of ?-, ?- and ?-proteobacteria in burrow linings and of Actinobacteria in casts. Earthworm soil bioturbation increased the ?-diversity of atrazine degraders over the soil microsites generated. Atrazine degradation was enhanced in burrow linings in which primary atrazine degraders, closely related to Pelomonas aquatica, were detected only 2 days after atrazine addition. Atrazine degradation efficiency was not linearly related to the species richness of degraders but likely relied on keystone species. By enhancing soil heterogeneity, earthworms sustained high phylogenetic bacterial diversity and exerted a biotic control on the bacterial diversity-function relationships. Our findings call for future investigations to assess the ecological significance of biotic controls on the relationships between diversity and function on ecosystem properties and services (for example, soil detoxification) at larger scales.