Project description:Myxobacteria are members of ?-proteobacteria and are typified by large genomes, well-coordinated social behavior, gliding motility, and starvation-induced fruiting body formation. Here, we report the 10.33 Mb whole genome of a starch-degrading myxobacterium Sandaracinus amylolyticus DSM 53668(T) that encodes 8,962 proteins, 56 tRNA, and two rRNA operons. Phylogenetic analysis, in silico DNA-DNA hybridization and average nucleotide identity reveal its divergence from other myxobacterial species and support its taxonomic characterization into a separate family Sandaracinaceae, within the suborder Sorangiineae. Sequence similarity searches using the Carbohydrate-active enzymes (CAZyme) database help identify the enzyme repertoire of S. amylolyticus involved in starch, agar, chitin, and cellulose degradation. We identified 16 ?-amylases and two ?-amylases in the S. amylolyticus genome that likely play a role in starch degradation. While many of the amylases are seen conserved in other ?-proteobacteria, we notice several novel amylases acquired via horizontal transfer from members belonging to phylum Deinococcus-Thermus, Acidobacteria, and Cyanobacteria. No agar degrading enzyme(s) were identified in the S. amylolyticus genome. Interestingly, several putative ?-glucosidases and endoglucanases proteins involved in cellulose degradation were identified. However, the absence of cellobiohydrolases/exoglucanases corroborates with the lack of cellulose degradation by this bacteria.
Project description:Desulfurococcus amylolyticus DSM 16532 is an anaerobic and hyperthermophilic crenarchaeon known to grow on a variety of different carbon sources, including monosaccharides and polysaccharides. Furthermore, D. amylolyticus is one of the few archaea that are known to be able to grow on cellulose. Here, we present the metabolic reconstruction of D. amylolyticus' central carbon metabolism. Based on the published genome, the metabolic reconstruction was completed by integrating complementary information available from the KEGG, BRENDA, UniProt, NCBI, and PFAM databases, as well as from available literature. The genomic analysis of D. amylolyticus revealed genes for both the classical and the archaeal version of the Embden-Meyerhof pathway. The metabolic reconstruction highlighted gaps in carbon dioxide-fixation pathways. No complete carbon dioxide-fixation pathway such as the reductive citrate cycle or the dicarboxylate-4-hydroxybutyrate cycle could be identified. However, the metabolic reconstruction indicated that D. amylolyticus harbors all genes necessary for glucose metabolization. Closed batch experimental verification of glucose utilization by D. amylolyticus was performed in chemically defined medium. The findings from in silico analyses and from growth experiments are discussed with respect to physiological features of hyperthermophilic organisms.
Project description:Lactobacillus amylolyticus L6, a gram-positive amylolytic bacterium isolated from naturally fermented tofu whey (NFTW), was able to hydrolyze raffinose and stachyose for the production of ?-galactosidase. The cell-free extract of L. amylolyticus L6 was found to exhibit glycosyltransferase activity to synthesize ?-galacto-oligosaccharides (GOS) with melibiose as substrate. The coding genes of ?-galactosidase were identified in the genome of L. amylolyticus L6. The ?-galactosidase (AglB) was placed into GH36 family by amino acid sequence alignments with other ?-galactosidases from lactobacilli. The optimal reaction conditions of pH and temperature for AglB were pH 6.0 and 37°C, respectively. Besides, potassium ion was found to improve the activity of AglB while divalent mercury ion, copper ion and zinc ion displayed different degrees of inhibition effect. Under the optimum reaction condition, AglB could catalyze the synthesis of GOS with degree of polymerization (DP) ?5 by using 300 mM melibiose concentration as substrate. The maximum yield of GOS with (DP) ?3 could reach 31.56% (w/w). Transgalactosyl properties made AglB a potential candidate for application in the production of GOS.
Project description:BACKGROUND:Lactobacillus fermentum, a member of the lactic acid bacteria complex, has recently garnered increased attention due to documented antagonistic properties and interest in assessing the probiotic potential of select strains that may provide human health benefits. Here, we genomically characterize L. fermentum using the type strain DSM 20052 as a canonical representative of this species. RESULTS:We determined the polished whole genome sequence of this type strain and compared it to 37 available genome sequences within this species. Results reveal genetic diversity across nine clades, with variable content encompassing mobile genetic elements, CRISPR-Cas immune systems and genomic islands, as well as numerous genome rearrangements. Interestingly, we determined a high frequency of occurrence of diverse Type I, II, and III CRISPR-Cas systems in 72% of the genomes, with a high level of strain hypervariability. CONCLUSIONS:These findings provide a basis for the genetic characterization of L. fermentum strains of scientific and commercial interest. Furthermore, our study enables genomic-informed selection of strains with specific traits for commercial product formulation, and establishes a framework for the functional characterization of features of interest.
Project description:Formate is one of the key compounds of the microbial carbon and/or energy metabolism. It owes a significant contribution to various anaerobic syntrophic associations, and may become one of the energy storage compounds of modern energy biotechnology. Microbial growth on formate was demonstrated for different bacteria and archaea, but not yet for species of the archaeal phylum Crenarchaeota. Here, we show that Desulfurococcus amylolyticus DSM 16532, an anaerobic and hyperthermophilic Crenarchaeon, metabolises formate without the production of molecular hydrogen. Growth, substrate uptake, and production kinetics on formate, glucose, and glucose/formate mixtures exhibited similar specific growth rates and similar final cell densities. A whole cell conversion experiment on formate revealed that D. amylolyticus converts formate into carbon dioxide, acetate, citrate, and ethanol. Using bioinformatic analysis, we examined whether one of the currently known and postulated formate utilisation pathways could be operative in D. amylolyticus. This analysis indicated the possibility that D. amylolyticus uses formaldehyde producing enzymes for the assimilation of formate. Therefore, we propose that formate might be assimilated into biomass through formaldehyde dehydrogenase and the oxidative pentose phosphate pathway. These findings shed new light on the metabolic versatility of the archaeal phylum Crenarchaeota.
Project description:Lactobacillus salivarius LPM01 (DSM 22150) is a probiotic strain able to improve health status in immunocompromised people. Here, we report its complete genome sequence deciphered by PacBio single-molecule real-time (SMRT) technology. Analysis of the sequence may provide insights into its functional activity and safety assessment.