Project description:Polyploidy poses challenges for phylogenetic reconstruction because of the need to identify and distinguish between homoeologous loci. This can be addressed by use of low copy nuclear markers. Panicum s.s. is a genus of about 100 species in the grass tribe Paniceae, subfamily Panicoideae, and is divided into five sections. Many of the species are known to be polyploids. The most well-known of the Panicum polyploids are switchgrass (Panicum virgatum) and common or Proso millet (P. miliaceum). Switchgrass is in section Virgata, along with P. tricholaenoides, P. amarum, and P. amarulum, whereas P. miliaceum is in sect. Panicum. We have generated sequence data from five low copy nuclear loci and two chloroplast loci and have clarified the origin of P. virgatum. We find that all members of sects. Virgata and Urvilleana are the result of diversification after a single allopolyploidy event. The closest diploid relatives of switchgrass are in sect. Rudgeana, native to Central and South America. Within sections Virgata and Urvilleana, P. tricholaenoides is sister to the remaining species. Panicum racemosum and P. urvilleanum form a clade, which may be sister to P. chloroleucum. Panicum amarum, P. amarulum, and the lowland and upland ecotypes of P. virgatum together form a clade, within which relationships are complex. Hexaploid and octoploid plants are likely allopolyploids, with P. amarum and P. amarulum sharing genomes with P. virgatum. Octoploid P. virgatum plants are formed via hybridization between disparate tetraploids. We show that polyploidy precedes diversification in a complex set of polyploids; our data thus suggest that polyploidy could provide the raw material for diversification. In addition, we show two rounds of allopolyploidization in the ancestry of switchgrass, and identify additional species that may be part of its broader gene pool. This may be relevant for development of the crop for biofuels.
Project description:Switchgrass (Panicum virgatum) is a polyploid, outcrossing grass species native to North America and has recently been recognized as a potential biofuel feedstock crop. Significant phenotypic variation including ploidy is present across the two primary ecotypes of switchgrass, referred to as upland and lowland switchgrass. The tetraploid switchgrass genome is approximately 1400 Mbp, split between two subgenomes, with significant repetitive sequence content limiting the efficiency of re-sequencing approaches for determining genome diversity. To characterize genetic diversity in upland and lowland switchgrass as a first step in linking genotype to phenotype, we designed an exome capture probe set based on transcript assemblies that represent approximately 50 Mb of annotated switchgrass exome sequences. We then evaluated and optimized the probe set using solid phase comparative genome hybridization and liquid phase exome capture followed by next-generation sequencing. Using the optimized probe set, we assessed variation in the exomes of eight switchgrass genotypes representing tetraploid lowland and octoploid upland cultivars to benchmark our exome capture probe set design. We identified ample variation in the switchgrass genome including 1,395,501 single nucleotide polymorphisms (SNPs), 8173 putative copy number variants and 3336 presence/absence variants. While the majority of the SNPs (84%) detected was bi-allelic, a substantial number was tri-allelic with limited occurrence of tetra-allelic polymorphisms consistent with the heterozygous and polyploid nature of the switchgrass genome. Collectively, these data demonstrate the efficacy of exome capture for discovery of genome variation in a polyploid species with a large, repetitive and heterozygous genome.
Project description:Small RNAs (21-24 nt) are pivotal regulators of gene expression that guide both transcriptional and post-transcriptional silencing mechanisms in diverse eukaryotes, including most if not all plants. MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are the two major types, both of which have a demonstrated and important role in plant development, stress responses and pathogen resistance. In this work, we used a deep sequencing approach (Sequencing-By-Synthesis, or SBS) to develop sequence resources of small RNAs from Panicum virgatum tissues (including leaves, drought-treated leaves and flowers). The high depth of the resulting datasets enabled us to examine in detail critical small RNA features as size distribution, tissue-specific regulation and sequence conservation between different organs in this species. We also developed database resources and a dedicated website (http://smallrna.udel.edu/) with computational tools for allowing other users to identify new miRNAs or siRNAs involved in specific regulatory pathways, verify the degree of conservation of these sequences in other plant species and map small RNAs on genes or larger regions of the maize genome under study. Overall design: Small RNA libraries were derived from leaves, drought-treated leaves and flowers of Panicum virgatum. Total RNA was isolated using the Plant RNA Purification Reagent (Invitrogen), and submitted to Illumina (Hayward, CA, http://www.illumina.com) for small RNA library construction using approaches described in (Lu et al., 2007) with minor modifications. The small RNA libraries were sequenced with the Sequencing-By-Synthesis (SBS) technology by Illumina. PERL scripts were designed to remove the adapter sequences and determine the abundance of each distinct small RNA. We thank Pamela Green for providing the plant material as well as Kan Nobuta and Gayathri Mahalingam for assistance with the computational methods.
Project description:Small RNAs (21-24 nt) are pivotal regulators of gene expression that guide both transcriptional and post-transcriptional silencing mechanisms in diverse eukaryotes, including most if not all plants. MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are the two major types, both of which have a demonstrated and important role in plant development, stress responses and pathogen resistance. In this work, we used a deep sequencing approach (Sequencing-By-Synthesis, or SBS) to develop sequence resources of small RNAs from Panicum virgatum tissues (including leaves, drought-treated leaves and flowers). The high depth of the resulting datasets enabled us to examine in detail critical small RNA features as size distribution, tissue-specific regulation and sequence conservation between different organs in this species. We also developed database resources and a dedicated website (http://smallrna.udel.edu/) with computational tools for allowing other users to identify new miRNAs or siRNAs involved in specific regulatory pathways, verify the degree of conservation of these sequences in other plant species and map small RNAs on genes or larger regions of the maize genome under study. Small RNA libraries were derived from leaves, drought-treated leaves and flowers of Panicum virgatum. Total RNA was isolated using the Plant RNA Purification Reagent (Invitrogen), and submitted to Illumina (Hayward, CA, http://www.illumina.com) for small RNA library construction using approaches described in (Lu et al., 2007) with minor modifications. The small RNA libraries were sequenced with the Sequencing-By-Synthesis (SBS) technology by Illumina. PERL scripts were designed to remove the adapter sequences and determine the abundance of each distinct small RNA. We thank Pamela Green for providing the plant material as well as Kan Nobuta and Gayathri Mahalingam for assistance with the computational methods.
Project description:The current study focuses on the usage of bio synthesized zinc oxide nanoparticles to increase the tissue culture efficiency of important forage grass Panicum virgatum. Zinc being a micronutrient enhanced the callogenesis and regeneration efficiency of Panicum virgatum at different concentrations. Here, we synthesized zinc oxide nanoparticles through Cymbopogon citratus leaves extract to evaluate the effect of zinc oxide nanoparticles on plant regeneration ability in switchgrass. X-ray diffraction (XRD) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) validate phase purity of green synthesize Zinc oxide nanoparticles whereas, electron microscopy (SEM) has illustrated the average size of particle 50±4 nm with hexagonal rod like shape. Energy dispersive spectroscopy X-ray (EDS) depicted major peaks of Zn (92.68%) while minor peaks refer to Oxygen (7.32%). ZnO-NPs demonstrated the incredibly promising results against callogenesis. Biosynthesized ZnO-NPs at optimum concentration showed very promising effect on plant regeneration ability. Both the explants, seeds and nodes showed dose dependent response and upon high doses exceeding 40 mg/L the results were recorded negative, whereas at 30 mg/L both explants demonstrated 70% and 76% regeneration frequency. The results conclude that ZnO-NPs enhance the plant growth and development and tailored the nutritive properties at nano-scale. Furthermore, eco-friendly approach of ZnO-NPs synthesis is strongly believed to improve in vitro regeneration frequencies in several other monocot plants.
Project description:Cereal aphids can successfully colonize and damage switchgrass (Panicum virgatum) plants. Among the aphids tested, greenbugs (Schizaphis graminum, GB) caused significant plant damage likely through a combination of aphid-salivary proteins that are injected into plants during feeding and a strong host response elicited by herbivory. In this study, changes in protein phosphorylation present in GB-infested and uninfested control plants was determined. These data were compared against transcriptome changes recently published for this system.
Project description:BACKGROUND:Switchgrass (Panicum virgatum L.) is a promising bioenergy feedstock because it can be grown on marginal land and produces abundant biomass. Recalcitrance of the lignocellulosic components of the switchgrass cell wall to enzymatic degradation into simple sugars impedes efficient biofuel production. We previously demonstrated that overexpression of OsAT10, a BAHD acyltransferase gene, enhances saccharification efficiency in rice. RESULTS:Here we show that overexpression of the rice OsAT10 gene in switchgrass decreased the levels of cell wall-bound ferulic acid (FA) in green leaf tissues and to a lesser extent in senesced tissues, and significantly increased levels of cell wall-bound p-coumaric acid (p-CA) in green leaves but decreased its level in senesced tissues of the T0 plants under greenhouse conditions. The engineered switchgrass lines exhibit an approximate 40% increase in saccharification efficiency in green tissues and a 30% increase in senesced tissues. CONCLUSION:Our study demonstrates that overexpression of OsAT10, a rice BAHD acyltransferase gene, enhances saccharification of lignocellulosic biomass in switchgrass.
Project description:Switchgrass (Panicum virgatum L.) is a perennial grass undergoing development as a biofuel feedstock. One of the most important factors hindering breeding efforts in this species is the need for accurate measurement of biomass yield on a per-hectare basis. Genomic selection on simple-to-measure traits that approximate biomass yield has the potential to significantly speed up the breeding cycle. Recent advances in switchgrass genomic and phenotypic resources are now making it possible to evaluate the potential of genomic selection of such traits. We leveraged these resources to study the ability of three widely-used genomic selection models to predict phenotypic values of morphological and biomass quality traits in an association panel consisting of predominantly northern adapted upland germplasm. High prediction accuracies were obtained for most of the traits, with standability having the highest ten-fold cross validation prediction accuracy (0.52). Moreover, the morphological traits generally had higher prediction accuracies than the biomass quality traits. Nevertheless, our results suggest that the quality of current genomic and phenotypic resources available for switchgrass is sufficiently high for genomic selection to significantly impact breeding efforts for biomass yield.
Project description:Cell wall recalcitrance is the major challenge to improving saccharification efficiency in converting lignocellulose into biofuels. However, information regarding the transcriptional regulation of secondary cell wall biogenesis remains poor in switchgrass (Panicum virgatum), which has been selected as a biofuel crop in the United States. In this study, we present a combination of computational and experimental approaches to develop gene regulatory networks for lignin formation in switchgrass. To screen transcription factors (TFs) involved in lignin biosynthesis, we developed a modified method to perform co-expression network analysis using 14 lignin biosynthesis genes as bait (target) genes. The switchgrass lignin co-expression network was further extended by adding 14 TFs identified in this study, and seven TFs identified in previous studies, as bait genes. Six TFs (PvMYB58/63, PvMYB42/85, PvMYB4, PvWRKY12, PvSND2 and PvSWN2) were targeted to generate overexpressing and/or down-regulated transgenic switchgrass lines. The alteration of lignin content, cell wall composition and/or plant growth in the transgenic plants supported the role of the TFs in controlling secondary wall formation. RNA-seq analysis of four of the transgenic switchgrass lines revealed downstream target genes of the secondary wall-related TFs and crosstalk with other biological pathways. In vitro transactivation assays further confirmed the regulation of specific lignin pathway genes by four of the TFs. Our meta-analysis provides a hierarchical network of TFs and their potential target genes for future manipulation of secondary cell wall formation for lignin modification in switchgrass.
Project description:Switchgrass (Panicum virgatum L) is perennial, C4 grass with great potential as a biofuel crop. An in-depth understanding of the mechanisms that control mineral uptake, distribution and remobilization will benefit sustainable production. Nutrients are mobilized from aerial portions to below-ground crowns and rhizomes as a natural accompaniment to above-ground senescence post seed-set. Mineral uptake and remobilization is dependent on transporters, however, little if any information is available about the specific transporters that are needed and how their relative expression changes over a growing season. Using well-defined classes of mineral transporters, we identified 520 genes belonging to 40 different transporter classes in the tetraploid switchgrass genome. Expression patterns were determined for many of these genes using publically available transcriptomic datasets obtained from both greenhouse and field grown plants. Certain transporters showed strong temporal patterns of expression in distinct developmental stages of the plant. Gene-expression was verified for selected transporters using qRT-PCR. By and large these analyses confirmed the developmental stage-specific expression of these genes. Mineral analyses indicated that K, Fe, Mg, Co, and As had a similar pattern of accumulation with apparent limited remobilization at the end of the growing season. These initial analyses will serve as a foundation for more detailed examination of the nutrient biology of switchgrass.