Project description:Here, we report the complete genome sequences of two Megasphaera elsdenii strains, ATCC 25940 and NCIMB 702410. M. elsdenii is an anaerobic bacterium capable of producing butanoate and hexanoate and is a member of the Negativicutes.
Project description:Megasphaera elsdenii is a Gram-negative ruminal bacterium. It is being investigated as a probiotic supplement for ruminants as it may provide benefits for energy balance and animal productivity. Furthermore, it is of biotechnological interest due to its capability of producing various volatile fatty acids. Here we report the complete genome sequence of M. elsdenii DSM 20460, the type strain for the species.
Project description:<b>Background:</b> <i>Megasphaera elsdenii</i> is an ecologically important rumen bacterium that metabolizes lactate and relieves rumen acidosis (RA) induced by a high-grain-diet. Understanding the regulatory mechanisms of the lactate metabolism of this species in RA conditions might contribute to developing dietary strategies to alleviate RA. <b>Methods:</b> <i>Megasphaera elsdenii</i> was co-cultured with four lactate producers (<i>Streptococcus bovis</i>, <i>Lactobacilli fermentum</i>, <i>Butyrivibrio fibrisolvens</i>, and <i>Selenomonas ruminantium</i>) and a series of substrate starch doses (1, 3, and 9 g/L) were used to induce one normal and two RA models (subacute rumen acidosis, SARA and acute rumen acidosis, ARA) under batch conditions. The associations between bacterial competition and the shift of organic acids' (OA) accumulation patterns in both statics and dynamics manners were investigated in RA models. Furthermore, we examined the effects of substrate lactate concentration and pH on <i>Megasphaera elsdenii's</i> lactate degradation pattern and genes related to the lactate utilizing pathways in the continuous culture. <b>Results and Conclusion:</b> The positive growth of <i>M. elsdenii</i> and <i>B. fibrisolvens</i> caused OA accumulation in the SARA model to shift from lactate to butyrate and resulted in pH recovery. Furthermore, both the quantities of substrate lactate and pH had remarkable effects on <i>M. elsdenii</i> lactate utilization due to the transcriptional regulation of metabolic genes, and the lactate utilization in <i>M. elsdenii</i> was more sensitive to pH changes than to the substrate lactate level. In addition, compared with associations based on statics data, associations discovered from dynamics data showed greater significance and gave additional explanations regarding the relationships between bacterial competition and OA accumulation.
Project description:A total of 30 Megasphaera elsdenii strains, selectively isolated from the feces of organically raised swine by using Me109 M medium, and one bovine strain were analyzed for tetracycline resistance genotypic and phenotypic traits. Tetracycline-resistant strains carried tet(O), tet(W), or a tet gene mosaic of tet(O) and tet(W). M. elsdenii strains carrying tet(OWO) genes exhibited the highest tetracycline MICs (128 to >256 microg/ml), suggesting that tet(O)-tet(W) mosaic genes provide the selective advantage of greater tetracycline resistance for this species. Seven tet genotypes are now known for M. elsdenii, an archetype commensal anaerobe and model for tet gene evolution in the mammalian intestinal tract.
Project description:Hexanoic acid and its derivatives have been recently recognized as value-added materials and can be synthesized by several microbes. Of them, Megasphaera elsdenii has been considered as an interesting hexanoic acid producer because of its capability to utilize a variety of carbons sources. However, the cellular metabolism and physiology of M. elsdenii still remain uncharacterized. Therefore, in order to better understand hexanoic acid synthetic metabolism in M. elsdenii, we newly reconstructed its genome-scale metabolic model, iME375, which accounts for 375 genes, 521 reactions, and 443 metabolites. A constraint-based analysis was then employed to evaluate cell growth under various conditions. Subsequently, a flux ratio analysis was conducted to understand the mechanism of bifurcated hexanoic acid synthetic pathways, including the typical fatty acid synthetic pathway via acetyl-CoA and the TCA cycle in a counterclockwise direction through succinate. The resultant metabolic states showed that the highest hexanoic acid production could be achieved when the balanced fractional contribution via acetyl-CoA and succinate in reductive TCA cycle was formed in various cell growth rates. The highest hexanoic acid production was maintained in the most perturbed flux ratio, as phosphoenolpyruvate carboxykinase (pck) enables the bifurcated pathway to form consistent fluxes. Finally, organic acid consuming simulations suggested that succinate can increase both biomass formation and hexanoic acid production.
Project description:Anaerobic bacteria insensitive to chlortetracycline (64 to 256 microg/ml) were isolated from cecal contents and cecal tissues of swine fed or not fed chlortetracycline. A nutritionally complex, rumen fluid-based medium was used for culturing the bacteria. Eight of 84 isolates from seven different animals were identified as Megasphaera elsdenii strains based on their large-coccus morphology, rapid growth on lactate, and 16S ribosomal DNA sequence similarities with M. elsdenii LC-1(T). All eight strains had tetracycline MICs of between 128 and 256 microg/ml. Based on PCR assays differentiating 14 tet classes, the strains gave a positive reaction for the tet(O) gene. By contrast, three ruminant M. elsdenii strains recovered from 30-year-old culture stocks had tetracycline MICs of 4 microg/ml and did not contain tet genes. The tet genes of two tetracycline-resistant M. elsdenii strains were amplified and cloned. Both genes bestowed tetracycline resistance (MIC = 32 to 64 microg/ml) on recombinant Escherichia coli strains. Sequence analysis revealed that the M. elsdenii genes represent two different mosaic genes formed by interclass (double-crossover) recombination events involving tet(O) and tet(W). One or the other genotype was present in each of the eight tetracycline-resistant M. elsdenii strains isolated in these studies. These findings suggest a role for commensal bacteria not only in the preservation and dissemination of antibiotic resistance in the intestinal tract but also in the evolution of resistance.