Project description:Biodegradation with microorganisms is considered as an efficient strategy to remove the environmental pollutants. In this work, Deinococcus actinosclerus SJTR1 isolated from the wastewater was confirmed with great degradation capability to 17?-estradiol, one typical estrogen chemical. It could degrade nearly 90% of 17?-estradiol (10 mg/L) in 5 days and transform it into estrone; its degradation kinetics fitted for the first-order kinetic equation. The whole genome sequence of D. actinosclerus SJTR1 was obtained and annotated, containing one chromosome (3,315,586 bp) and four plasmids (ranging from 17,267 bp to 460,244 bp). A total of 3913 CDSs and 73 RNA genes (including 12 rRNA genes, 50 tRNA genes, and 11 ncRNA genes) were identified in its whole genome sequence. On this basis, a series of potential genes involved in steroid metabolism and stress responses of D. actinosclerus SJTR1 were predicted. It is the first report of Deinococcus strain with the degradation capability to estrogens. This work could enrich the genome sources of the estrogen-degrading strains and promote the degradation mechanism study of 17?-estradiol in bacteria.
Project description:Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at its optimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to resistance; and strengthen the case for a role in survival of systems involved in manganese and iron homeostasis.
Project description:Deinococcus wulumuqiensis 479 (formerly known as Deinococcus radiodurans 479) is the original source strain for the restriction enzyme DrdI. Its complete sequence and full methylome were determined using Pacific Biosciences single-molecule real-time (SMRT) sequencing.
Project description:Deinococcus maricopensis (Rainey and da Costa 2005) is a member of the genus Deinococcus, which is comprised of 44 validly named species and is located within the deeply branching bacterial phylum Deinococcus-Thermus. Strain LB-34(T) was isolated from a soil sample from the Sonoran Desert in Arizona. Various species of the genus Deinococcus are characterized by extreme radiation resistance, with D. maricopensis being resistant in excess of 10 kGy. Even though the genomes of three Deinococcus species, D. radiodurans, D. geothermalis and D. deserti, have already been published, no special physiological characteristic is currently known that is unique to this group. It is therefore of special interest to analyze the genomes of additional species of the genus Deinococcus to better understand how these species adapted to gamma- or UV ionizing-radiation. The 3,498,530 bp long genome of D. maricopensis with its 3,301 protein-coding and 66 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Project description:Deinococcus radiodurans R1 is one of the most radiation-resistant organisms known and is able to repair an unusually large amount of DNA damage without induced mutation. Single-stranded DNA-binding (SSB) protein is an essential protein in all organisms and is involved in DNA replication, recombination and repair. The published genomic sequence from Deinococcus radiodurans includes a putative single-stranded DNA-binding protein gene (ssb; DR0100) requiring a translational frameshift for synthesis of a complete SSB protein. The apparently tripartite gene has inspired considerable speculation in the literature about potentially novel frameshifting or RNA editing mechanisms. Immediately upstream of the ssb gene is another gene (DR0099) given an ssb-like annotation, but left unexplored.A segment of the Deinococcus radiodurans strain R1 genome encompassing the ssb gene has been re-sequenced, and two errors involving omitted guanine nucleotides have been documented. The corrected sequence incorporates both of the open reading frames designated DR0099 and DR0100 into one contiguous ssb open reading frame (ORF). The corrected gene requires no translational frameshifts and contains two predicted oligonucleotide/oligosaccharide-binding (OB) folds. The protein has been purified and its sequence is closely related to the Thermus thermophilus and Thermus aquaticus SSB proteins. Like the Thermus SSB proteins, the SSBDr functions as a homodimer. The Deinococcus radiodurans SSB homodimer stimulates Deinococcus radiodurans RecA protein and Escherichia coli RecA protein-promoted DNA three-strand exchange reactions with at least the same efficiency as the Escherichia coli SSB homotetramer.The correct Deinococcus radiodurans ssb gene is a contiguous open reading frame that codes for the largest bacterial SSB monomer identified to date. The Deinococcus radiodurans SSB protein includes two OB folds per monomer and functions as a homodimer. The Deinococcus radiodurans SSB protein efficiently stimulates Deinococcus radiodurans RecA and also Escherichia coli RecA protein-promoted DNA strand exchange reactions. The identification and purification of Deinococcus radiodurans SSB protein not only allows for greater understanding of the SSB protein family but provides an essential yet previously missing player in the current efforts to understand the extraordinary DNA repair capacity of Deinococcus radiodurans.
Project description:Deinococcus wulumuqiensis R12, isolated from radiation-polluted soil, is a red-pigmented strain of the extremely radioresistant genus Deinococcus. It contains a major carotenoid, namely, deinoxanthin. Here, we present a 3.39-Mb assembly of its genome sequence, which might provide various kinds of useful information related to Deinococcus, such as about the key enzymes of its radioresistance mechanism and carotenoid biosynthetic pathways.
Project description:The complete genome sequence of the radiation-resistant bacterium Deinococcus radiodurans R1 is composed of two chromosomes (2,648,638 and 412,348 base pairs), a megaplasmid (177,466 base pairs), and a small plasmid (45,704 base pairs), yielding a total genome of 3,284, 156 base pairs. Multiple components distributed on the chromosomes and megaplasmid that contribute to the ability of D. radiodurans to survive under conditions of starvation, oxidative stress, and high amounts of DNA damage were identified. Deinococcus radiodurans represents an organism in which all systems for DNA repair, DNA damage export, desiccation and starvation recovery, and genetic redundancy are present in one cell.
Project description:Deinococcus proteolyticus (ex Kobatake et al. 1973) Brook and Murray 1981 is one of currently 47 species in the genus Deinococcus within the family Deinococcaceae. Strain MRP(T) was isolated from feces of Lama glama and possesses extreme radiation resistance, a trait is shares with various other species of the genus Deinococcus, with D. proteolyticus being resistant up to 1.5 Mrad of gamma radiation. Strain MRP(T) is of further interest for its carotenoid pigment. The genome presented here is only the fifth completed genome sequence of a member of the genus Deinococcus (and the forth type strain) to be published, and will hopefully contribute to a better understanding of how members of this genus adapted to high gamma- or UV ionizing-radiation. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,886,836 bp long genome with its four large plasmids of lengths 97 kbp, 132 kbp, 196 kbp and 315 kbp harbors 2,741 protein-coding and 58 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.