Project description:Mikania micrantha is one of the top 100 worst invasive species that can cause serious damage to natural ecosystems and substantial economic losses. Here, we present its 1.79?Gb chromosome-scale reference genome. Half of the genome is composed of long terminal repeat retrotransposons, 80% of which have been derived from a significant expansion in the past one million years. We identify a whole genome duplication event and recent segmental duplications, which may be responsible for its rapid environmental adaptation. Additionally, we show that M. micrantha achieves higher photosynthetic capacity by CO2 absorption at night to supplement the carbon fixation during the day, as well as enhanced stem photosynthesis efficiency. Furthermore, the metabolites of M. micrantha can increase the availability of nitrogen by enriching the microbes that participate in nitrogen cycling pathways. These findings collectively provide insights into the rapid growth and invasive adaptation.
Project description:Background:The genus Potentilla is closely related to that of Fragaria, the economically important strawberry genus. Potentilla micrantha is a species that does not develop berries but shares numerous morphological and ecological characteristics with Fragaria vesca. These similarities make P. micrantha an attractive choice for comparative genomics studies with F. vesca. Findings:In this study, the P. micrantha genome was sequenced and annotated, and RNA-Seq data from the different developmental stages of flowering and fruiting were used to develop a set of gene predictions. A 327 Mbp sequence and annotation of the genome of P. micrantha, spanning 2674 sequence contigs, with an N50 size of 335,712, estimated to cover 80% of the total genome size of the species was developed. The genus Potentilla has a characteristically larger genome size than Fragaria, but the recovered sequence scaffolds were remarkably collinear at the micro-syntenic level with the genome of F. vesca, its closest sequenced relative. A total of 33,602 genes were predicted, and 95.1% of bench-marking universal single-copy orthologous genes were complete within the presented sequence. Thus, we argue that the majority of the gene-rich regions of the genome have been sequenced. Conclusions:Comparisons of RNA-Seq data from the stages of floral and fruit development revealed genes differentially expressed between P. micrantha and F. vesca.The data presented are a valuable resource for future studies of berry development in Fragaria and the Rosaceae and they also shed light on the evolution of genome size and organization in this family.