Project description:BACKGROUND:Very few closed genomes of the cyanobacteria that commonly produce toxic blooms in lakes and reservoirs are available, limiting our understanding of the properties of these organisms. A new anatoxin-a-producing member of the Nostocaceae, Anabaena sp. WA102, was isolated from a freshwater lake in Washington State, USA, in 2013 and maintained in non-axenic culture. RESULTS:The Anabaena sp. WA102 5.7 Mbp genome assembly has been closed with long-read, single-molecule sequencing and separately a draft genome assembly has been produced with short-read sequencing technology. The closed and draft genome assemblies are compared, showing a correlation between long repeats in the genome and the many gaps in the short-read assembly. Anabaena sp. WA102 encodes anatoxin-a biosynthetic genes, as does its close relative Anabaena sp. AL93 (also introduced in this study). These strains are distinguished by differences in the genes for light-harvesting phycobilins, with Anabaena sp. AL93 possessing a phycoerythrocyanin operon. Biologically relevant structural variants in the Anabaena sp. WA102 genome were detected only by long-read sequencing: a tandem triplication of the anaBCD promoter region in the anatoxin-a synthase gene cluster (not triplicated in Anabaena sp. AL93) and a 5-kbp deletion variant present in two-thirds of the population. The genome has a large number of mobile elements (160). Strikingly, there was no synteny with the genome of its nearest fully assembled relative, Anabaena sp. 90. CONCLUSION:Structural and functional genome analyses indicate that Anabaena sp. WA102 has a flexible genome. Genome closure, which can be readily achieved with long-read sequencing, reveals large scale (e.g., gene order) and local structural features that should be considered in understanding genome evolution and function.
Project description:In the present work, a highly pathogenic isolate of Fusarium oxysporum f. sp. lini, which is the most harmful pathogen affecting flax (Linum usitatissimum L.), was sequenced for the first time. To achieve a high-quality genome assembly, we used the combination of two sequencing platforms - Oxford Nanopore Technologies (MinION system) with long noisy reads and Illumina (HiSeq 2500 instrument) with short accurate reads. Given the quality of DNA is crucial for Nanopore sequencing, we developed the protocol for extraction of pure high-molecular-weight DNA from fungi. Sequencing of DNA extracted using this protocol allowed us to obtain about 85x genome coverage with long (N50 = 29 kb) MinION reads and 30x coverage with 2 × 250 bp HiSeq reads. Several tools were developed for genome assembly; however, they provide different results depending on genome complexity, sequencing data volume, read length and quality. We benchmarked the most requested assemblers (Canu, Flye, Shasta, wtdbg2, and MaSuRCA), Nanopore polishers (Medaka and Racon), and Illumina polishers (Pilon and POLCA) on our sequencing data. The assembly performed with Canu and polished with Medaka and POLCA was considered the most full and accurate. After further elimination of redundant contigs using Purge Haplotigs, we achieved a high-quality genome of F. oxysporum f. sp. lini with a total length of 59 Mb, N50 of 3.3 Mb, and 99.5% completeness according to BUSCO. We also obtained a complete circular mitochondrial genome with a length of 38.7 kb. The achieved assembly expands studies on F. oxysporum and plant-pathogen interaction in flax.
Project description:The genome sequence of Rhizobium sp. strain 76, a bacterium isolated from the hyphosphere of Fusarium oxysporum f. sp. cucumerinum, is reported here. Genome sequencing and assembly yielded 5,375,961 bases with a 59.14% G+C content, comprising two chromosomes and one plasmid.
Project description:The filamentous fungus Fusarium oxysporum is a soilborne pathogen of many cultivated species and an opportunistic pathogen of humans. F. oxysporum f. sp. matthiolae is one of three formae speciales that are pathogenic to crucifers, including Arabidopsis thaliana, a premier model for plant molecular biology and genetics. Here, we report a genome assembly of F. oxysporum f. sp. matthiolae strain PHW726, generated using a combination of PacBio and Illumina sequencing technologies. The genome assembly presented here should facilitate in-depth investigation of F. oxysporum-Arabidopsis interactions and shed light on the genetics of fungal pathogenesis and plant immunity.
Project description:Here, we report the draft genome sequence of a Clostridium sp. strain isolated from a fecal sample of a 34-year-old adult male in Taiwan. This strain may represent a new bacterium, as suggested by a comparison based on whole-genome sequencing. The genome assembly comprised 6,089,737?bp, with a 45.63% G+C content.
Project description:Streptomyces sp. strain SGAir0924 was isolated from outdoor air collected in Singapore. Its genome was assembled using long reads generated by single-molecule real-time sequencing. The final assembly had one chromosome of 7.65 Mb and three plasmids with an average length of 142 kb. The genome contained 6,825 protein-coding genes, 68 tRNAs, and 18 rRNAs.
Project description:We report here the genome sequence of a Commensalibacter sp. strain (AMU001) isolated from honey bees (Apis mellifera) from Seychelles. By combining long- and short-read sequencing technologies, we produced the first complete reference genome assembly for the Commensalibacter genus. We anticipate that this will aid future comparative and functional genomic studies.
Project description:We report the draft genome sequences of Bacillus glennii V44-8, Bacillus saganii V47-23a, and Bacillus sp. strain V59.32b, isolated from the Viking spacecraft assembly cleanroom, and Bacillus sp. strain MER_TA_151 and Paenibacillus sp. strain MER_111, isolated from the Mars Exploration Rover (MER) assembly cleanroom.
Project description:Pseudomonas sp. strain M1 is a soil isolate with remarkable biotechnological potential. The genome of Pseudomonas sp. M1 was sequenced using both 454 and Illumina technologies. A customized genome assembly pipeline was used to reconstruct its genome sequence to a single scaffold.