Project description:In 2014, antimicrobial drug-resistant Campylobacter jejuni sequence type 6964 emerged contemporaneously in poultry from 3 supply companies in the North Island of New Zealand and as a major cause of campylobacteriosis in humans in New Zealand. This lineage, not previously identified in New Zealand, was resistant to tetracycline and fluoroquinolones. Genomic analysis revealed divergence into 2 major clades; both clades were associated with human infection, 1 with poultry companies A and B and the other with company C. Accessory genome evolution was associated with a plasmid, phage insertions, and natural transformation. We hypothesize that the tetO gene and a phage were inserted into the chromosome after conjugation, leaving a remnant plasmid that was lost from isolates from company C. The emergence and rapid spread of a resistant clone of C. jejuni in New Zealand, coupled with evolutionary change in the accessory genome, demonstrate the need for ongoing Campylobacter surveillance among poultry and humans.
Project description:We examined whole-genome-sequenced Campylobacter jejuni and C. coli from 2012-2015 isolated from birds and human stool samples in North East Scotland for the presence of antimicrobial resistance genes. We found that sequence type (ST) 5136 (clonal complex 464) was the most prevalent multidrug-resistant strain of C. jejuni exclusively associated with poultry host reservoirs and recovered from human cases of campylobacteriosis. Tetracycline resistance in ST5136 isolates was due to a tet(O/32/O) mosaic gene, ampicillin resistance was conferred by G???T transversion in the -10 promoter region of blaOXA-193, fluoroquinolone resistance was due to C257T change in gyrA, and aminoglycoside resistance was conferred by aac. Whole-genome analysis showed that the strain ST5136 evolved from ST464. The nationwide emergence of ST5136 was probably due to stepwise acquisition of antimicrobial resistance genes selected by high use of ?-lactam, tetracycline, fluoroquinolone, and aminoglycoside classes of drugs in the poultry industry.
Project description:In a structured survey of all major chicken-meat producers in Australia, we investigated the antimicrobial resistance (AMR) and genomic characteristics of Campylobacter jejuni (n?=?108) and C. coli (n?=?96) from cecal samples of chickens at slaughter (n?=?200). The majority of the C. jejuni (63%) and C. coli (86.5%) samples were susceptible to all antimicrobials. Fluoroquinolone resistance was detected among both C. jejuni (14.8%) and C. coli (5.2%), although this only included three sequence types (STs) and one ST, respectively. Multidrug resistance among strains of C. jejuni (0.9%) and C. coli (4.1%) was rare, and fluoroquinolone resistance, when present, was never accompanied by resistance to any other agent. Comparative genome analysis demonstrated that Australian isolates were found dispersed on different branches/clusters within the international collection. The major fluoroquinolone-resistant STs of C. jejuni (ST7323, ST2083, and ST2343) and C. coli (ST860) present in Australian chickens were similar to those of international isolates and have been reported previously in humans and animals overseas. The detection of a subpopulation of Campylobacter isolates exclusively resistant to fluoroquinolone was unexpected since most critically important antimicrobials such as fluoroquinolones are excluded from use in Australian livestock. A number of factors, including the low level of resistance to other antimicrobials, the absence of fluoroquinolone use, the adoption of measures for preventing spread of contagion between flocks, and particularly the genomic identities of isolates, all point to humans, pest species, or wild birds as being the most plausible source of organisms. This study also demonstrates the need for vigilance in the form of surveillance for AMR based on robust sampling to manage AMR risks in the food chain.IMPORTANCE Campylobacter is one of the most common causes of gastroenteritis in humans, with infections frequently resulting from exposure to undercooked poultry products. Although human illness is typically self-limiting, a minority of cases do require antimicrobial therapy. Ensuring that Campylobacter originating from meat chickens does not acquire resistance to fluoroquinolones is therefore a valuable outcome for public health. Australia has never legalized the use of fluoroquinolones in commercial chickens and until now fluoroquinolone-resistant Campylobacter has not been detected in the Australian poultry. This structured survey of meat chickens derived from all major Australian producers describes the unexpected emergence of fluoroquinolone resistance in Campylobacter jejuni and C. coli Genetic characterization suggests that these isolates may have evolved outside the Australian poultry sector and were introduced into poultry by humans, pest species, or wild birds. The findings dramatically underline the critical role of biosecurity in the overall fight against antimicrobial resistance.
Project description:Campylobacter jejuni, a common foodborne zoonotic pathogen, causes gastroenteritis worldwide and is increasingly resistant to antibiotics. We aimed to investigate the antimicrobial resistance (AMR) genotypes of C. jejuni isolated from humans, poultry and birds from wild and urban Italian habitats to identify correlations between phenotypic and genotypic AMR in the isolates. Altogether, 644 C. jejuni isolates from humans (51), poultry (526) and wild- and urban-habitat birds (67) were analysed. The resistance phenotypes of the isolates were determined using the microdilution method with EUCAST breakpoints, and AMR-associated genes and single nucleotide polymorphisms were obtained from a publicly available database. Antimicrobial susceptibility testing showed that C. jejuni isolates from poultry and humans were highly resistant to ciprofloxacin (85.55% and 76.47%, respectively), nalidixic acid (75.48% and 74.51%, respectively) and tetracycline (67.87% and 49.02%, respectively). Fewer isolates from the wild- and urban-habitat birds were resistant to tetracycline (19.40%), fluoroquinolones (13.43%), and quinolone and streptomycin (10.45%). We retrieved seven AMR genes (tet (O), cmeA, cmeB, cmeC, cmeR, blaOXA-61 and blaOXA-184) and gyrA-associated point mutations. Two major B-lactam genes called blaOXA-61 and blaOXA-184 were prevalent at 62.93% and 82.08% in the poultry and the other bird groups, respectively. Strong correlations between genotypic and phenotypic resistance were found for fluoroquinolones and tetracycline. Compared with the farmed chickens, the incidence of AMR in the C. jejuni isolates from the other bird groups was low, confirming that the food-production birds are much more exposed to antimicrobials. The improper and overuse of antibiotics in the human population and in animal husbandry has resulted in an increase in antibiotic-resistant infections, particularly fluoroquinolone resistant ones. Better understanding of the AMR mechanisms in C. jejuni is necessary to develop new strategies for improving AMR programs and provide the most appropriate therapies to human and veterinary populations.
Project description:Antimicrobial resistance in Campylobacter, common in poultry, is a global public health issue. The emergence and spread of antimicrobial resistant Campylobacter has been linked to the use of antimicrobials in food animals. Small poultry flocks are becoming increasingly popular not only as a source of food but also as pets, yet not all small flock owners are aware of proper antimicrobial use practices and safe food handling protocols. This trend could contribute to antimicrobial resistance. In order to determine the prevalence of antimicrobial resistance in Campylobacter in small poultry flocks, we analyzed data from birds that had been submitted to a diagnostic laboratory in Ontario between October 2015 and September 2017. A pooled cecal sample was obtained from each submission and cultured for Campylobacter jejuni and Campylobacter coli. Three isolates were recovered from each positive sample and tested for susceptibility to nine antimicrobials using a broth microdilution method. Overall, 176 isolates were recovered (141 chicken, 21 turkey, 6 duck, and 8 game bird). A high frequency of resistance to tetracycline was observed in the C. jejuni isolates from chickens (77%) and turkeys (100%), and in the C. coli isolates from turkeys (50%) and game birds (40%). Campylobacter jejuni isolates had higher odds of resistance to tetracycline (OR = 3.54, P ? 0.01) compared to C. coli isolates. Overall, there was a low frequency of resistance to quinolones and a very low frequency of resistance to macrolides. Multidrug resistance was uncommon. The high prevalence of tetracycline resistance emphasizes the importance of prudent antimicrobial use in small flocks. Although low, the presence of resistance to macrolides and quinolones, which are used to treat campylobacteriosis in humans, highlights the need for proper food safety and infection control practices by small flock owners to prevent exposure to antimicrobial resistant Campylobacter.
Project description:Human infections with Campylobacter are primarily associated with the consumption of contaminated poultry meat. In this study, we isolated Campylobacter jejuni from retail raw chicken and duck meat in Korea and compared their aerotolerance, antibiotic resistance, and virulence gene prevalence. Whereas C. jejuni isolates from chicken dominantly belonged to multilocus sequence typing (MLST) clonal complex (CC)-21, CC-45 is the common MLST sequence type in duck meat isolates. C. jejuni strains from both chicken and duck meat were highly tolerant to aerobic stress. The prevalence of virulence genes was higher in C. jejuni strains from chicken than those from duck meat. However, antibiotic resistance was higher in duck meat isolates than chicken isolates. Based on the prevalence of virulence genes and antibiotic resistance, fluoroquinolone-resistant C. jejuni strains harboring all tested virulence genes except virB11 were predominant on retail poultry. Fluoroquinolone-resistant C. jejuni strains carrying most virulence genes were more frequently isolated in summer than in winter. The comparative profiling analysis in this study successfully demonstrated that antibiotic-resistant and pathogenic strains of C. jejuni are highly prevalent on retail poultry and that retail duck meat is an important vehicle potentially transmitting C. jejuni to humans in Korea.
Project description:BACKGROUND:Campylobacter is one of the leading bacterial species causing foodborne illnesses in humans. Antimicrobial agents have been extensively used for treatment of Campylobacter infections; but in the recent years, both animal and human isolates of this bacterium have shown resistance to several antibiotics such as tetracycline. OBJECTIVES:The aim of this study was to investigate the presence of genetic determinants of tetracycline resistance in Campylobacter spp. recovered from poultry carcasses in Shiraz, Iran. MATERIALS AND METHODS:Eighty-three thermophilic Campylobacter spp. Isolates were first identified based on multiplex polymerase chain reaction (PCR) and then screened for presence of tetracycline resistance genes (tet (A), tet (B), tet (O) and te (S)) by PCR. RESULTS:The overall prevalence of Campylobacter jejuni and C. coli among the examined isolates was 51.8% and 48.2%, respectively. Tetracycline resistance genes of tet (B) and tet (S) were not seen among these Campylobacter spp. Isolates, whereas the most common tet gene identi?ed was tet (O), found in 83.1% (69/83) of all the isolates. The tet (O) gene sequence comparison between C. jejuni and C. coli showed 100% similarity and these sequences (JX853721and JX853722) were also identical to the homologous sequences of other strains of Campylobacter spp. existing in the GenBank databases. In addition, tet (A) was found in 18% (15/83) of Campylobacter spp. isolates. To our knowledge, this represents the first report of tet (A) in Campylobacter spp. There was 100% homology between the sequences of tet (A) from this study (JX891463 and JX891464) and the tet (A) sequences mentioned for other bacteria in the GenBank databases. CONCLUSIONS:The high prevalence of tet (O) resistance gene along with new detection of tet (A) resistance gene in Campylobacter spp. isolated from poultry carcasses revealed an extensive tetracycline resistance among Campylobacter isolates from poultry in Iran. It emphasized the need for cautious use of tetracycline in poultry production to decrease the extension of tetracycline-resistant Campylobacter spp.
Project description:Campylobacter jejuni is one of the most prevalent causes of bacterial gastroenteritis worldwide, and it is largely associated with consumption of contaminated poultry. Current Campylobacter control measures at the poultry production level remain insufficient, and hence there is the need for alternative control strategies. We evaluated the potential of the monoterpene (-)-?-pinene for control of C. jejuni in poultry. The antibacterial and resistance-modulatory activities of (-)-?-pinene were also determined against 57 C. jejuni strains. In addition, the anti-quorum-sensing activity of (-)-?-pinene against C. jejuni NCTC 11168 was determined for three subinhibitory concentrations (125, 62.5, 31.25 mg/L) over three incubation times using an autoinducer-2 bioassay based on Vibrio harveyi BB170 bioluminescence measurements. The effects of a subinhibitory concentration of (-)-?-pinene (250 mg/L) on survival of C. jejuni, and in combination with enrofloxacin on fluoroquinolone resistance development in C. jejuni, were determined in a broiler chicken model, by addition of (-)-?-pinene to the broiler water supply. The reduction of C. jejuni numbers by (-)-?-pinene was further determined in broiler chickens that were colonized with either fluoroquinolone-susceptible or -resistant strains, by direct gavage treatment. We observed weak in vitro antimicrobial activity for (-)-?-pinene alone (MIC >500 mg/L), but strong potentiating effects on antibiotics erythromycin and ciprofloxacin against different Campylobacter strains (>512 fold change). After 24 h of treatment of C. jejuni with (-)-?-pinene, its quorum-sensing signaling was reduced by >80% compared to the untreated control. When given in the drinking water, (-)-?-pinene did not show any significant inhibitory effects on the level of C. jejuni in the colonized chickens, and did not reduce fluoroquinolone resistance development in combination with enrofloxacin. Conversely, when (-)-?-pinene was administered by direct gavage, it significantly reduced the number of fluoroquinolone susceptible C. jejuni in the colonized broiler chickens. These results demonstrate that (-)-?-pinene modulates quorum-sensing in Campylobacter, potentiates antibiotics against different Campylobacter strains, and reduces Campylobacter colonization in broiler chickens.
Project description:The objective of this study was to determine fluoroquinolone resistance in Campylobacter spp from poultry and human isolates. Forty-one Campylobacter jejuni isolates (30 of poultry origin and 11 of human origin) and 11 Campylobacter coli isolates (10 of human origin and 1 of poultry origin) were examined for ciprofloxacin, norfloxacin, and nalidixic acid resistance using the minimal inhibitory concentration (MIC) method. Thereafter, the isolates were analyzed by PCR-Restriction Fragment Length Polymorphism (RFLP) assay for detection of Thr-86 mutation. Finally, DNA sequencing was performed for confirmation of gyrA gene mutation. A complete correlation was observed between MICs, PCR-RFLP assay, and sequencing. The results revealed high quinolone resistance rates for C. jejuni (100%) and C. coli (100%) isolates obtained from poultry and moderate resistance for C. jejuni (9.1%) and C. coli (40%) samples of human origin. A mutation in codon 86 of the gyrA gene with a Thr-to-Ile substitution is reported to be the main cause of high resistance to quinolones. This mutation can be analyzed by PCR-RFLP assay, which has been proven to be a simple and fast method for the detection of fluoroquinolone resistance in Campylobacter spp.
Project description:BackgroundCampylobacter is the main cause of bacterial gastroenteritis worldwide. The main transmission route is through consumption of food contaminated with Campylobacter species or contact with infected animals. In Latvia, the prevalence of campylobacteriosis is reported to be low (4.6 cases per 100,000 population in 2016).AimTo determine prevalence, species spectrum and antimicrobial resistance (AMR) of Campylobacter spp. in Latvia, using data from various livestock and human clinical samples.MethodsWe analysed data of Campylobacter microbiological monitoring and AMR (2008 and 2014-16) in Latvia. Data from broilers, poultry, pigs, calves and humans were used to determine prevalence of Campylobacter. Additionally, 45 different origin isolates (22 human) were sequenced on the Illumina MiSeq platform; for each isolate core genome multilocus sequence typing was used and relevant antimicrobial resistance mechanisms were identified.ResultsOverall, Campylobacter prevalence in was 83.3% in pigs, 50.2% in broilers, 16.1% in calves and 5.3% in humans; C. jejuni was the predominant species in all sources except pigs where C. coli was main species. High level of resistance in Campylobacter were observed against fluoroquinolones, tetracycline and streptomycin, in most of sequenced isolates genetic determinants of relevant AMR profiles were identified.ConclusionsIn Latvia, prevalence of Campylobacter in livestock is high, especially in pigs and broilers; prevalence in poultry and humans were lower than in other European countries. AMR analysis reveals increase of streptomycin and tetracycline resistant broiler origin C. jejuni strains. WGS demonstrates a high compliance between resistance phenotype and genotype for quinolones and tetracyclines.