Project description:Cellulosimicrobium funkei is a rare, opportunistic pathogen. We describe a case of bacteremia and possibly prosthetic valve endocarditis by this organism in a nonimmunocompromised patient. Useful phenotypic tests for differentiating C. funkei from Cellulosimicrobium cellulans and Cellulosimicrobium terreum include motility, raffinose fermentation, glycogen, D-xylose, and methyl-?-D-glucopyranoside assimilation, and growth at 35°C.
Project description:Two experiments were conducted to screen microorganisms with aflatoxin B1 (AFB1 ) removal potential from soils and to evaluate their ability in reducing the toxic effects of AFB1 in ducklings. In experiment 1, we screened 11 isolates that showed the AFB1 biodegradation ability, and the one exhibited the highest AFB1 removal ability (97%) was characterized and identified as Cellulosimicrobium funkei (C.?funkei). In experiment 2, 80 day-old Cherry Valley ducklings were divided into four groups with four replicates of five birds each and were used in a 2 by 2 factorial trial design, in which the main factors included administration of AFB1 versus solvent and C.?funkei versus solvent for 2 weeks. The AFB1 treatment significantly decreased the body weight gain, feed intake and impaired feed conversion ratio. AFB1 also decreased serum albumin and total protein concentration, while it increased activities of alanine aminotransferase and aspartate aminotransferase and liver damage in the ducklings. Supplementation of C.?funkei alleviated the adverse effects of AFB1 on growth performance, and provided protective effects on the serum biochemical indicators, and decreased hepatic injury in the ducklings. Conclusively, our results suggest that the novel isolated C.?funkei strain could be used to mitigate the negative effects of aflatoxicosis in ducklings.
Project description:Contamination of agriculture land by heavy metals is a worldwide risk that has sped up noticeably since the beginning of the industrial revolution. Hence, there arise the demands of heavy metal tolerant plant growth promoting bacterial strains for specific metal contaminated agricultural sites restoration. In this study, 36 bacterial isolates were screened out from the rhizospheric soil of Phaseolus vulgaris. Among these, two bacterial strains AR6 and AR8 were selected based on their higher Cr(VI) tolerance (1200 and 1100 ?g/mL, respectively) and the maximum production of plant growth promoting substances. In the molecular characterization study, both the bacterial strains showed 99% homology with Cellulosimicrobium funkei KM032184. In greenhouse experiments, the exposure of Cr(VI) to P.vulgaris inhibited the growth and photosynthetic pigments and increased the enzymatic and non-enzymatic antioxidant expressions. However, rhizosphere bacterial inoculations alleviated the negative effect of Cr(VI) and enhanced the seed germination rate (89.54%), shoot (74.50%),root length (60%), total biomass (52.53%), chlorophyll a (15.91%), chlorophyll b (17.97%), total chlorophyll (16.58%) and carotenoid content (3.59%). Moreover, bacterial inoculations stabilized and modulated the antioxidant system of P. vulgaris by reducing the accumulation of Cr in plant tissues. The present finding shows the Cr(VI) tolerance and plant growth promoting properties of the rhizosphere bacterial strains which might make them eligible as biofertilizer of metal-contaminated soils.
Project description:Biotransformation for increasing the pharmaceutical effect of ginsenosides is getting more and more attractions. Strain Cellulosimicrobium sp. TH-20 isolated from ginseng soil samples was identified to produce enzymes contributing to its excellent biotransformation activity against ginsenosides, the main active components of ginseng. Based on phylogenetic tree and homology analysis, the strain can be designated as Cellulosimicrobium sp. Genome sequencing was performed using the Illumina Miseq to explore the functional genes involved in ginsenoside transformation. The draft genome of Cellulosimicrobium sp. TH-20 encoded 3450 open reading frames, 51 tRNA, and 9 rRNA. All ORFs were annotated using NCBI BLAST with non-redundant proteins, Gene Ontology, Cluster of Orthologous Gene, and Kyoto Encyclopedia of Genes and Genomes databases. A total of 11 genes were selected based on the functional annotation analysis. These genes are relevant to ginsenoside biotransformation, including 6 for beta-glucosidase, 1 for alpha-N-arabinofuranosidase, 1 for alpha-1,6-glucosidase, 1 for endo-1,4-beta-xylanase, 1 for alpha-L-arabinofuranosidase, and 1 for beta-galactosidase. These glycosidases were predicted to catalyze the hydrolysis of sugar moieties attached to the aglycon of ginsenosides and led to the transformation of PPD-type and PPT-type ginsenosides.