Project description:A genome sequence of the Mycoplasma bovis Ningxia-1 strain was tested by Pacific Biosciences (PacBio) single-molecule real-time (SMRT) sequencing technology. The strain was isolated from a lesioned calf lung in 2013 in Pengyang, Ningxia, China. The single circular chromosome of 1,033,629 bp shows differences between complete Mycoplasma bovis genome in insertion-like sequences (ISs), integrative conjugative elements (ICEs), lipoproteins (LPs), variable surface lipoproteins (VSPs), pathogenicity islands (PAIs), etc.
Project description:Mycoplasma bovis is a major bacterial pathogen that causes pneumonia, mastitis, and arthritis in cattle. In this study, we performed whole-genome sequencing of an M. bovis strain isolated in Japan for the first time and announce the complete genome sequence of strain KG4397, which caused respiratory diseases in cattle in 2012.
Project description:Mycoplasmas are regarded to be useful models for studying the minimum genetic complement required for independent survival of an organism. Mycoplasma bovis is a globally distributed pathogen causing pneumonia, mastitis, arthritis, otitis media and reproductive tract disease, and genome sequences of three strains, the type strain PG45 and two strains isolated in China, have been published. In this study, several Tn4001 based transposon constructs were generated and used to create a M. bovis PG45 insertional mutant library. Direct genome sequencing of 319 independent insertions detected disruptions in 129 genes in M. bovis, 48 of which had homologues in Mycoplasma mycoides subspecies mycoides SC and 99 of which had homologues in Mycoplasma agalactiae. Sixteen genes found to be essential in previous studies on other mycoplasma species were found to be dispensable. Five of these genes have previously been predicted to be part of the core set of 153 essential genes in mycoplasmas. Thus this study has extended the list of non-essential genes of mycoplasmas from that previously generated by studies in other species.
Project description:BACKGROUND:Implementation of Third-Generation Sequencing approaches for Whole Genome Sequencing (WGS) all-in-one diagnostics in human and veterinary medicine, requires the rapid and accurate generation of consensus genomes. Over the last years, Oxford Nanopore Technologies (ONT) released various new devices (e.g. the Flongle R9.4.1 flow cell) and bioinformatics tools (e.g. the in 2019-released Bonito basecaller), allowing cheap and user-friendly cost-efficient introduction in various NGS workflows. While single read, overall consensus accuracies, and completeness of genome sequences has been improved dramatically, further improvements are required when working with non-frequently sequenced organisms like Mycoplasma bovis. As an important primary respiratory pathogen in cattle, rapid M. bovis diagnostics is crucial to allow timely and targeted disease control and prevention. Current complete diagnostics (including identification, strain typing, and antimicrobial resistance (AMR) detection) require combined culture-based and molecular approaches, of which the first can take 1-2 weeks. At present, cheap and quick long read all-in-one WGS approaches can only be implemented if increased accuracies and genome completeness can be obtained. RESULTS:Here, a taxon-specific custom-trained Bonito v.0.1.3 basecalling model (custom-pg45) was implemented in various WGS assembly bioinformatics pipelines. Using MinION sequencing data, we showed improved consensus accuracies up to Q45.2 and Q46.7 for reference-based and Canu de novo assembled M. bovis genomes, respectively. Furthermore, the custom-pg45 model resulted in mean consensus accuracies of Q45.0 and genome completeness of 94.6% for nine M. bovis field strains. Improvements were also observed for the single-use Flongle sequencer (mean Q36.0 accuracies and 80.3% genome completeness). CONCLUSIONS:These results implicate that taxon-specific basecalling of MinION and single-use Flongle Nanopore long reads are of great value to be implemented in rapid all-in-one WGS tools as evidenced for Mycoplasma bovis as an example.
Project description:Infection by Mycoplasma bovis (M. bovis) can induce diseases, such as pneumonia and otitis media in young calves and mastitis and arthritis in older animals. Here, we report the finished and annotated genome sequence of M. bovis strain Hubei-1, a strain isolated in 2008 that caused calf pneumonia on a Chinese farm. The genome of M. bovis strain Hubei-1 contains a single circular chromosome of 953,114 bp with a 29.37% GC content. We identified 803 open reading frames (ORFs) that occupy 89.5% of the genome. While 34 ORFs were Hubei-1 specific, 662 ORFs had orthologs in the M. bovis type strain PG45 genome. Genome analysis validated lateral gene transfer between M. bovis and the Mycoplasma mycoides subspecies mycoides, while phylogenetic analysis found that the closest M. bovis neighbor is Mycoplasma agalactiae. Glycerol may be the main carbon and energy source of M. bovis, and most of the biosynthesis pathways were incomplete. We report that 47 lipoproteins, 12 extracellular proteins and 18 transmembrane proteins are phase-variable and may help M. bovis escape the immune response. Besides lipoproteins and phase-variable proteins, genomic analysis found two possible pathogenicity islands, which consist of four genes and 11 genes each, and several other virulence factors including hemolysin, lipoate protein ligase, dihydrolipoamide dehydrogenase, extracellular cysteine protease and 5'-nucleotidase.
Project description:Antimicrobial resistance (AMR) in Mycoplasma bovis has been previously associated with topoisomerase and ribosomal gene mutations rather than specific resistance-conferring genes. Using whole genome sequencing (WGS) to identify potential new AMR mechanisms for M. bovis, it was found that a 2019 clinical isolate with high MIC (2019-043682) for fluoroquinolones, macrolides, lincosamides, pleuromutilins and tetracyclines had a new core genome multilocus sequencing (cgMLST) type (ST10-like) and 91% sequence similarity to the published genome of M. bovis PG45. Closely related to PG45, a 1982 isolate (1982-M6152) shared the same cgMLST type (ST17), 97.2% sequence similarity and low MIC results. Known and potential AMR- associated genetic events were identified through multiple sequence alignment of the three genomes. Isolate 2019-043682 had 507 genes with non-synonymous mutations (NSMs) and 67 genes disrupted. Isolate 1982-M6152 had 81 NSMs and 20 disruptions. Using functional roles and known mechanisms of antimicrobials, a 55 gene subset was assessed for AMR potential. Seventeen were previously identified from other bacteria as sites of AMR mutation, 38 shared similar functions to them, and 11 contained gene-disrupting mutations. This study indicated that M. bovis may obtain high AMR characteristics by mutating or disrupting other functional genes, in addition to topoisomerases and ribosomal genes.
Project description:BACKGROUND:Mycoplasma bovis is an important etiologic agent of bovine mycoplasmosis affecting cattle production and animal welfare. In the past in Israel, M. bovis has been most frequently associated with bovine respiratory disease (BRD) and was rarely isolated from mastitis. This situation changed in 2008 when M. bovis-associated mastitis emerged in Israel. The aim of this study was to utilize whole genome sequencing to evaluate the molecular epidemiology and genomic diversity of M. bovis mastitis-associated strains and their genetic relatedness to M. bovis strains isolated from BRD in local feedlot calves and those imported to Israel from different European countries and Australia. RESULTS:Phylogeny based on total single nucleotide polymorphism (SNP) analysis of 225?M. bovis genomes clearly showed clustering of isolates on the basis of geographical origin: strains isolated from European countries clustered together and separately from Australian and Chinese isolates, while Israeli isolates were found in the both groups. The dominant genotype was identified among local mastitis-associated M. bovis isolates. This genotype showed a close genomic relatedness to M. bovis strains isolated from calves imported to Israel from Australia, to original Australian M. bovis strains, as well as to strains isolated in China. CONCLUSIONS:This study represents the first comprehensive high-resolution genome-based epidemiological analysis of M. bovis in Israel and illustrates the possible dissemination of the pathogen across the globe by cattle trade.
Project description:Although the complete genome sequences of three strains of Mycoplasma bovis are available, few studies have examined gene function in this important pathogen. Mycoplasmas lack the biosynthetic machinery for the de novo synthesis of nucleic acid precursors, so nucleases are likely to be essential for them to acquire nucleotide precursors. Three putative membrane nucleases have been annotated in the genome of M. bovis strain PG45, MBOVPG45_0089 and MBOVPG45_0310, both of which have the thermonuclease (TNASE_3) functional domain, and MBOVPG45_0215 (mnuA), which has an exonuclease/endonuclease/phosphatase domain. While previous studies have demonstrated the function of TNASE_3 domain nucleases in several mycoplasmas, quantitative comparisons of the contributions of different nucleases to cellular nuclease activity have been lacking. Mapping of a library of 319 transposon mutants of M. bovis PG45 by direct genome sequencing identified mutants with insertions in MBOVPG45_0310 (the ?0310 mutant) and MBOVPG45_0215 (the ?0215 mutant). In this study, the detection of the product of MBOVPG45_0215 in the Triton X-114 fraction of M. bovis cell lysates, its cell surface exposure, and its predicted signal peptide suggested that it is a surface-exposed lipoprotein nuclease. Comparison of a ?mnuA mutant with wild-type M. bovis on native and denatured DNA gels and in digestion assays using double-stranded phage ? DNA and closed circular plasmid DNA demonstrated that inactivation of this gene abolishes most of the cellular exonuclease and endonuclease activity of M. bovis. This activity could be fully restored by complementation with the wild-type mnuA gene, demonstrating that MnuA is the major cellular nuclease of M. bovis.Nucleases are thought to be important contributors to virulence and crucial for the maintenance of a nutritional supply of nucleotides in mycoplasmas that are pathogenic in animals. This study demonstrates for the first time that of the three annotated cell surface nuclease genes in an important pathogenic mycoplasma, the homologue of the thermostable nuclease identified in Gram-positive bacteria is responsible for the majority of the nuclease activity detectable in vitro.
Project description:Mycoplasma bovis is a major bacterial pathogen that can cause respiratory disease, mastitis, and arthritis in cattle. We report here the complete and annotated genome sequence of M. bovis strain 08M, isolated from a calf lung with pneumonia in China.
Project description:Infectious bovine keratoconjunctivitis (IBK), also known as pinkeye, is one of the most common eye diseases in cattle. Several pathogens have been associated with IBK cases, however, Moraxella bovis, Moraxella bovoculi, Mycoplasma bovis, Mycoplasma bovoculi and bovine herpesvirus type 1 (BHV-1) are most frequently observed. A multiplex real-time PCR assay using two reactions was developed for the detection and differentiation of these five pathogens. Detection sensitivities of the multiplex assays were compared to singleplex reactions testing for the same targets. Correlation coefficients (R<sup>2</sup>) of >0.99, and PCR efficiencies between 92 and 106% were demonstrated in all singleplex and multiplex real-time PCR reactions. The limits of detection (LOD) of multiplex assays for Moraxella bovis, Moraxella bovoculi, Mycoplasma bovis, Mycoplasma bovoculi and BHV-1 were 19, 23, 25, 24 and 26 copies per reaction, respectively. No cross amplification was observed for specificity testing of 179 IBK positive clinical samples and 55 non-target clinical samples. Percentage of clinical samples positive for Mycoplasma bovoculi, Moraxella bovoculi, Moraxella bovis, BHV-1 and Mycoplasma bovis were 88.8% (159/179), 75.9% (136/179), 60.3% (108/179), 11.7% (21/179) and 10.0% (18/179), respectively. Moraxella bovis, Moraxella bovoculi and Mycoplasma bovoculi were more prevalent than Mycoplasma bovis and BHV-1 in IBK samples collected from animals in this study population. Our data indicates that the multiplex real-time PCR panel assay is highly sensitive and highly specific for the detection and differentiation of the five major pathogens associated with bovine pinkeye.