Project description:The genus Cronobacter (formerly called Enterobacter sakazakii) is composed of five species; C. sakazakii, C. malonaticus, C. turicensis, C. muytjensii, and C. dublinensis. The genus includes opportunistic human pathogens, and the first three species have been associated with neonatal infections. The most severe diseases are caused in neonates and include fatal necrotizing enterocolitis and meningitis. The genetic basis of the diversity within the genus is unknown, and few virulence traits have been identified. We report here the first sequence of a member of this genus, C. sakazakii strain BAA-894. The genome of Cronobacter sakazakii strain BAA-894 comprises a 4.4 Mb chromosome (57% GC content) and two plasmids; 31 Kb (51% GC) and 131 Kb (56% GC). The genome was used to construct a 385,000 probe oligonucleotide tiling DNA microarray covering the whole genome. Comparative genomic hybridization (CGH) was undertaken on five other C. sakazakii strains, and representatives of the four other Cronobacter species. Among 4,382 annotated genes inspected in this study, about 55% of genes were common to all C. sakazakii strains and 43% were common to all Cronobacter strains, with 10 - 17% absence of genes. CGH highlighted 15 clusters of genes in C. sakazakii BAA-894 that were divergent or absent in more than half of the tested strains; six of these are of probable prophage origin. Putative virulence factors were identified in these prophage and in other variable regions. A number of genes unique to Cronobacter species associated with neonatal infections (C. sakazakii, C. malonaticus and C. turicensis) were identified. These included a copper and silver resistance system known to be linked to invasion of the blood-brain barrier by neonatal meningitic strains of Escherichia coli. In addition, genes encoding for multidrug efflux pumps and adhesins were identified that were unique to C. sakazakii strains from outbreaks in neonatal intensive care units. Comparative genomic hybridization highlighted 15 clusters of genes in C. sakazakii BAA-894 that were divergent or absent in more than half of the tested strains; six of these are of probable prophage origin. Putative virulence factors were identified in these prophage and in other variable regions. A number of genes unique to Cronobacter species associated with neonatal infections (C. sakazakii, C. malonaticus and C. turicensis) were identified. These included a copper and silver resistance system known to be linked to invasion of the blood-brain barrier by neonatal meningitic strains of Escherichia coli. In addition, genes encoding for multidrug efflux pumps and adhesins were identified that were unique to C. sakazakii strains from outbreaks in neonatal intensive care units. Ten Cronobacter samples were analyzed, including total genomic DNA of six C. sakazakii strains, one C. malonaticus strain, one C. muytjensii strain, one C. dublinensis strain and one C. turicensis strain.
Project description:Cronobacter sakazakii is considered to be an important pathogen involved in life-threatening neonatal infections. Here, we report the annotated complete genome sequence of C. sakazakii strain CMCC 45402, obtained from a milk sample in China. The major findings from the genomic analysis provide a better understanding of the isolates from China.
Project description:The genus Cronobacter (formerly called Enterobacter sakazakii) is composed of five species; C. sakazakii, C. malonaticus, C. turicensis, C. muytjensii, and C. dublinensis. The genus includes opportunistic human pathogens, and the first three species have been associated with neonatal infections. The most severe diseases are caused in neonates and include fatal necrotizing enterocolitis and meningitis. The genetic basis of the diversity within the genus is unknown, and few virulence traits have been identified. We report here the first sequence of a member of this genus, C. sakazakii strain BAA-894. The genome of Cronobacter sakazakii strain BAA-894 comprises a 4.4 Mb chromosome (57% GC content) and two plasmids; 31 Kb (51% GC) and 131 Kb (56% GC). The genome was used to construct a 385,000 probe oligonucleotide tiling DNA microarray covering the whole genome. Comparative genomic hybridization (CGH) was undertaken on five other C. sakazakii strains, and representatives of the four other Cronobacter species. Among 4,382 annotated genes inspected in this study, about 55% of genes were common to all C. sakazakii strains and 43% were common to all Cronobacter strains, with 10 - 17% absence of genes. CGH highlighted 15 clusters of genes in C. sakazakii BAA-894 that were divergent or absent in more than half of the tested strains; six of these are of probable prophage origin. Putative virulence factors were identified in these prophage and in other variable regions. A number of genes unique to Cronobacter species associated with neonatal infections (C. sakazakii, C. malonaticus and C. turicensis) were identified. These included a copper and silver resistance system known to be linked to invasion of the blood-brain barrier by neonatal meningitic strains of Escherichia coli. In addition, genes encoding for multidrug efflux pumps and adhesins were identified that were unique to C. sakazakii strains from outbreaks in neonatal intensive care units. Comparative genomic hybridization highlighted 15 clusters of genes in C. sakazakii BAA-894 that were divergent or absent in more than half of the tested strains; six of these are of probable prophage origin. Putative virulence factors were identified in these prophage and in other variable regions. A number of genes unique to Cronobacter species associated with neonatal infections (C. sakazakii, C. malonaticus and C. turicensis) were identified. These included a copper and silver resistance system known to be linked to invasion of the blood-brain barrier by neonatal meningitic strains of Escherichia coli. In addition, genes encoding for multidrug efflux pumps and adhesins were identified that were unique to C. sakazakii strains from outbreaks in neonatal intensive care units. Overall design: Ten Cronobacter samples were analyzed, including total genomic DNA of six C. sakazakii strains, one C. malonaticus strain, one C. muytjensii strain, one C. dublinensis strain and one C. turicensis strain.
Project description:The genus Cronobacter (formerly called Enterobacter sakazakii) is composed of five species; C. sakazakii, C. malonaticus, C. turicensis, C. muytjensii, and C. dublinensis. The genus includes opportunistic human pathogens, and the first three species have been associated with neonatal infections. The most severe diseases are caused in neonates and include fatal necrotizing enterocolitis and meningitis. The genetic basis of the diversity within the genus is unknown, and few virulence traits have been identified.We report here the first sequence of a member of this genus, C. sakazakii strain BAA-894. The genome of Cronobacter sakazakii strain BAA-894 comprises a 4.4 Mb chromosome (57% GC content) and two plasmids; 31 kb (51% GC) and 131 kb (56% GC). The genome was used to construct a 387,000 probe oligonucleotide tiling DNA microarray covering the whole genome. Comparative genomic hybridization (CGH) was undertaken on five other C. sakazakii strains, and representatives of the four other Cronobacter species. Among 4,382 annotated genes inspected in this study, about 55% of genes were common to all C. sakazakii strains and 43% were common to all Cronobacter strains, with 10-17% absence of genes.CGH highlighted 15 clusters of genes in C. sakazakii BAA-894 that were divergent or absent in more than half of the tested strains; six of these are of probable prophage origin. Putative virulence factors were identified in these prophage and in other variable regions. A number of genes unique to Cronobacter species associated with neonatal infections (C. sakazakii, C. malonaticus and C. turicensis) were identified. These included a copper and silver resistance system known to be linked to invasion of the blood-brain barrier by neonatal meningitic strains of Escherichia coli. In addition, genes encoding for multidrug efflux pumps and adhesins were identified that were unique to C. sakazakii strains from outbreaks in neonatal intensive care units.
Project description:Cronobacter sakazakii is an emerging pathogen that causes meningitis, bacteremia, sepsis, and necrotizing enterocolitis in premature infants. Strain Cr268 was isolated from imported powdered infant formula in 2009 during routine microbial examination according to ISO-22964 ("Microbiology of the food chain-horizontal method for the detection of Cronobacter spp."). Isolate Cr268 was confirmed to be C. sakazakii by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and standard biochemical analysis. Here, we announce its genome, which represents a new member in the C. sakazakii group.
Project description:Cronobacter sakazakii is a foodborne opportunistic pathogen that causes pneumonia, meningitis and bacteremia. To understand the acidic regulated and two component system PmrA/PmrB about strain pathogenesis, transcriptomics analysis of C. sakazakii grown under acidic pH 5.0 was performed by using RNA-sequencing. Overall design: There are five samples, Cronobacter sakazakii at pH 7.0, Cronobacter sakazakii at pH 5.0, eptA muntant, pmrA muntant, lpxM muntant
Project description:We present here the draft genome of Cronobacter sakazakii GP1999, a sequence type 145 strain isolated from the rhizosphere of tomato plants. Assembly and annotation of the genome resulted in a genome of 4,504,670 bp in size, with 4,148 coding sequences, and a GC content of 56.8%.
Project description:Cronobacter sakazakii has been documented as a cause of life-threating infections, predominantly in neonates. We conducted a multicenter study to assess the occurrence of C. sakazakii across Europe and the extent of clonality for outbreak detection. National coordinators representing 24 countries in Europe were requested to submit all human C. sakazakii isolates collected during 2017 to a study center in Austria. Testing at the center included species identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, subtyping by whole-genome sequencing (WGS), and determination of antimicrobial resistance. Eleven countries sent 77 isolates, including 36 isolates from 2017 and 41 historical isolates. Fifty-nine isolates were confirmed as C. sakazakii by WGS, highlighting the challenge of correctly identifying Cronobacter spp. WGS-based typing revealed high strain diversity, indicating absence of multinational outbreaks in 2017, but identified 4 previously unpublished historical outbreaks. WGS is the recommended method for accurate identification, typing, and detection of this pathogen.
Project description:While most phage genome studies have been focused on the virulent phages, the inducible temperate bacteriophage genome study provides more detailed information about the interaction between the host strain and the phage. To study this interaction in detail, UV-induced phiES15 bacteriophage was isolated from the host strain Cronobacter sakazakii ES15 and its genome was completely sequenced. Here we announce the genome sequence of phiES15 and report major findings from the annotation.
Project description:BACKGROUND:The Cronobacter genus is composed of seven species, and can cause infections in all age groups. Of particular concern is C. sakazakii, as this species is strongly associated with severe and often fatal cases of necrotizing enterocolitis and meningitis in neonates and infants. Whole genome sequencing has revealed that the nanAKT gene cluster required for the utilisation of exogenous sialic acid is unique to the C. sakazakii species (ESA_03609-13).Sialic acid is found in breast milk, infant formula, intestinal mucin, and gangliosides in the brain, hence its metabolism by C. sakazakii is of particular interest. Therefore its metabolism could be an important virulence factor. To date, no laboratory studies demonstrating the growth of C. sakazakii on sialic acid have been published nor have there been reports of sialidase activity. The phylogenetic analysis of the nan genes is of interest to determine whether the genes have been acquired by horizontal gene transfer. RESULTS:Phylogenetic analysis of 19 Cronobacter strains from 7 recognised species revealed the nanAKTR genes formed a unique cluster, separate from other Enterobacteriaceae such as E. coli K1 and Citrobacter koseri, which are also associated with neonatal meningitis. The gene organisation was similar to Edwardsiella tarda in that nanE gene (N-acetylmannosamine-6-phosphate-2epimerase) was not located within the nanATK cluster. Laboratory studies confirmed that only C. sakazakii, and not the other six Cronobacter species, was able to use sialic acid as a carbon source for growth. Although the ganglioside GM1 was also used as carbon source, no candidate sialidase genes were found in the genome, instead the substrate degradation is probably due to ?-galactosidase activity. CONCLUSIONS:Given the relatively recent evolution of both C. sakazakii (15-23 million years ago) and sialic acid synthesis in vertebrates, sialic acid utilization may be an example of co-evolution by one species of the Cronobacter genus with the mammalian host. This has possibly resulted in additional virulence factors contributing to severe life-threatening infections in neonates due to the utilization of sialic acid from breast milk, infant formula, milk (oligosaccharides), mucins lining the intestinal wall, and even gangliosides in the brain after passing through the blood-brain barrier.