Project description:Blood disease bacterium A2 HR-MARDI was isolated from banana plants infected with banana blood disease and which were planted in Kuala Kangsar, Malaysia. Here, we report a draft genome sequence of blood disease bacterium A2 HR-MARDI, which could provide important information on the virulence mechanism of this pathogen.
Project description:Whipple's disease is a systemic disorder in which a gram-positive rod-shaped bacterium is constantly present in infected tissues. After numerous unsuccessful attempts to culture this bacterium, it was eventually characterized by 16S rRNA gene analysis to be a member of the actinomycetes. The name Tropheryma whippelii was proposed. Until now, the bacterium has only been found in infected human tissues, but there is no evidence for human-to-human transmission. Here we report the detection of DNA specific for the Whipple's disease bacterium in 25 of 38 wastewater samples from five different sewage treatment plants in the area of Heidelberg, Germany. These findings provide the first evidence that T. whippelii occurs in the environment, within a polymicrobial community. This is in accordance with the phylogenetic relationship of this bacterium as well as with known epidemiological aspects of Whipple's disease. Our data argue for an environmental source for infection with the Whipple's disease bacterium.
Project description:The Ralstonia solanacearum species complex includes R. solanacearum, R. syzygii, and the Blood Disease Bacterium (BDB). All colonize plant xylem vessels and cause wilt diseases, but with significant biological differences. R. solanacearum is a soilborne bacterium that infects the roots of a broad range of plants. R. syzygii causes Sumatra disease of clove trees and is actively transmitted by cercopoid insects. BDB is also pathogenic to a single host, banana, and is transmitted by pollinating insects. Sequencing and DNA-DNA hybridization studies indicated that despite their phenotypic differences, these three plant pathogens are actually very closely related, falling into the Phylotype IV subgroup of the R. solanacearum species complex. To better understand the relationships among these bacteria, we sequenced and annotated the genomes of R. syzygii strain R24 and BDB strain R229. These genomes were compared to strain PSI07, a closely related Phylotype IV tomato isolate of R. solanacearum, and to five additional R. solanacearum genomes. Whole-genome comparisons confirmed previous phylogenetic results: the three phylotype IV strains share more and larger syntenic regions with each other than with other R. solanacearum strains. Furthermore, the genetic distances between strains, assessed by an in-silico equivalent of DNA-DNA hybridization, unambiguously showed that phylotype IV strains of BDB, R. syzygii and R. solanacearum form one genomic species. Based on these comprehensive data we propose a revision of the taxonomy of the R. solanacearum species complex. The BDB and R. syzygii genomes encoded no obvious unique metabolic capacities and contained no evidence of horizontal gene transfer from bacteria occupying similar niches. Genes specific to R. syzygii and BDB were almost all of unknown function or extrachromosomal origin. Thus, the pathogenic life-styles of these organisms are more probably due to ecological adaptation and genomic convergence during vertical evolution than to the acquisition of DNA by horizontal transfer.
Project description:The primary objective of this study was to analyze the most up-to-date evidence regarding whether and how blood sugar regulation influences cardiovascular health promotion and disease prevention by carrying out an umbrella review. Three separate, systematic literature searches identified 2,343 papers in total. Overall, 44 studies were included for data extraction and analysis. The included systematic reviews and meta-analyses published between January 1, 2016, and December 31, 2017, were of good to very good quality (median Overview Quality Assessment Questionnaire score = 17). Identified evidence suggests that cardiovascular disease (CVD) prevention services should consider regulation of blood glucose as a key target for intervention. Furthermore, the recommendations for effective intervention and service development/training described here for prevention of CVD should be adopted into evidence-based practice guidelines. Multidisciplinary teams should be formed to deliver multicomponent interventions in community-based settings. There may be substantial opportunities for integrating CVD and diabetes prevention services.
Project description:Melioidosis, a severe human disease caused by the bacterium Burkholderia pseudomallei, has a wide spectrum of clinical manifestations ranging from acute septicemia to chronic localized illness or latent infection. Murine models have been widely used to study the pathogenesis of infection and to evaluate novel therapies or vaccines, but how faithfully they recapitulate the biology of human melioidosis at a molecular level is not known. In this study, mice were intranasally infected with either high or low doses of B. pseudomallei to generate either acute, chronic, or latent infection and host blood and tissue transcriptional profiles were generated. Acute infection was accompanied by a homogeneous signature associated with induction of multiple innate immune response pathways, such as IL-10, TREM1, and IFN signaling, largely found in both blood and tissue. The transcriptional profile in blood reflected the heterogeneity of chronic infection and quantitatively reflected the severity of disease. Genes associated with fibrosis and tissue remodeling, including matrix metalloproteases and collagen, were upregulated in chronically infected mice with severe disease. Transcriptional signatures of both acute and chronic melioidosis revealed upregulation of iNOS in tissue, consistent with the expression of IFN-?, but also Arginase-1, a functional antagonist of the iNOS pathway, and was confirmed by immunohistochemistry. Comparison of these mouse blood datasets by pathway and modular analysis with the blood transcriptional signature of patients with melioidosis showed that many genes were similarly perturbed, including Arginase-1, IL-10, TREM1, and IFN signaling, revealing the common immune response occurring in both mice and humans.
Project description:A relationship between periodontitis and coronary heart disease has been investigated intensively. A pathogenic role for the oral bacterium Porphyromonas gingivalis has been suggested for both diseases. We examined whether complement activation by P. gingivalis strain ATCC 33277 allows the bacterium to adhere to human red blood cells (RBCs) and thereby evade attack by circulating phagocytes. On incubation with normal human serum, the P. gingivalis strain efficiently fixed complement component 3 (C3). Incubation of bacteria with washed whole blood cells suspended in autologous serum resulted in a dose- and time-dependent adherence to RBCs. The adherence required functionally intact complement receptor 1 (CR1; also called CD35) on the RBCs and significantly inhibited the uptake of P. gingivalis by neutrophils and B cells within 1 min of incubation (by 64% and 51%, respectively) and that by monocytes after between 15 min and 30 min of incubation (by 66% and 53%, respectively). The attachment of C3b/iC3b to bacterium-bearing RBCs decreased progressively after 15 min, indicating that conversion of C3 fragments into C3dg occurred, decreasing the affinity for CR1 on RBCs. We propose that P. gingivalis exploits RBCs as a transport vehicle, rendering it inaccessible to attack by phagocytes, and by doing so plays a role in the development of systemic diseases.
Project description:One of the world's most common infectious disease, periodontitis (PD), derives from largely uncharacterized communities of oral bacteria growing as biofilms (a.k.a. plaque) on teeth and gum surfaces in periodontal pockets. Bacteria associated with periodontal disease trigger inflammatory responses in immune cells, which in later stages of the disease cause loss of both soft and hard tissue structures supporting teeth. Thus far, only a handful of bacteria have been characterized as infectious agents of PD. Although deep sequencing technologies, such as whole community shotgun sequencing have the potential to capture a detailed picture of highly complex bacterial communities in any given environment, we still lack major reference genomes for the oral microbiome associated with PD and other diseases. In recent work, by using a combination of supervised machine learning and genome assembly, we identified a genome from a novel member of the Bacteroidetes phylum in periodontal samples. Here, by applying a comparative metagenomics read-classification approach, including 272 metagenomes from various human body sites, and our previously assembled draft genome of the uncultivated Candidatus Bacteroides periocalifornicus (CBP) bacterium, we show CBP's ubiquitous distribution in dental plaque, as well as its strong association with the well-known pathogenic "red complex" that resides in deep periodontal pockets.