Project description:Three species of cranes are distributed widely throughout southern Africa, but little is known about how they respond to the changes in land-use that have occurred in this region. This study assessed habitat preference of the two crane species across land-use categories of the self contained small scale commercial farms of 30 to 40 ha per household (A1), large scale commercial agriculture farms of > 50 ha per household (A2) and Old Resettlement, farms of < 5 ha per household with communal grazing land in Driefontein Grasslands Important Bird Area (IBA), Zimbabwe. The study further explored how selected explanatory (environmental) habitat variables influence crane species abundance. Crane bird counts and data on influencing environmental variables were collected between June and August 2012. Our results show that varying land-use categories had an influence on the abundance and distribution of the Wattled Crane (Bugeranus carunculatus) and the Grey Crowned Crane (Belearica regulorum) across Driefontein Grasslands IBA. The Wattled Crane was widely distributed in the relatively undisturbed A2 farms while the Grey Crowned Crane was associated with the more disturbed land of A1 farms, Old Resettlement and its communal grazing land. Cyperus esculentus and percent (%) bare ground were strong environmental variables best explaining the observed patterns in Wattled Crane abundance across land-use categories. The pattern in Grey Crowned Crane abundance was best explained by soil penetrability, moisture and grass height variables. A holistic sustainable land-use management that takes into account conservation of essential habitats in Driefontein Grasslands IBA is desirable for crane populations and other wetland dependent species that include water birds.
Project description:The red-crowned crane (Grus japonensis) is an endangered, large-bodied crane native to East Asia. It is a traditional symbol of longevity and its long lifespan has been confirmed both in captivity and in the wild. Lifespan in birds is known to be positively correlated with body size and negatively correlated with metabolic rate, though the genetic mechanisms for the red-crowned crane's long lifespan have not previously been investigated. Using whole genome sequencing and comparative evolutionary analyses against the grey-crowned crane and other avian genomes, including the long-lived common ostrich, we identified redcrowned crane candidate genes with known associations with longevity. Among these are positively selected genes in metabolism and immunity pathways (NDUFA5, NDUFA8, NUDT12, SOD3, CTH , RPA1, PHAX, HNMT , HS2ST1 , PPCDC , PSTK CD8B, GP9, IL-9R, and PTPRC). Our analyses provide genetic evidence for low metabolic rate and longevity, accompanied by possible convergent adaptation signatures among distantly related large and long-lived birds. Finally, we identified low genetic diversity in the red-crowned crane, consistent with its listing as an endangered species, and this genome should provide a useful genetic resource for future conservation studies of this rare and iconic species.
Project description:In this study, the complete mitogenome sequence of red-crowned crane (<i>G. japonensis</i>) has been decoded by next-generation sequencing and genome assembly. The assembled mitogenome, consisting of 16,727?bp, has unique 14 protein-coding genes (PCGs), 22 transfer RNAs, and two ribosomal RNAs genes. The complete mitogenome provides essential and important DNA molecular data for further phylogenetic and evolutionary analysis for red-crowned crane phylogeny.
Project description:The red-crowned crane is one of the rarest crane species, and its population is decreasing due to loss of habitat, poisoning, and infections. Using a viral metagenomics approach, we analyzed the virome of feces from wild and captive red-crowned cranes, which were pooled separately. Vertebrate viruses belonging to the families Picornaviridae, Parvoviridae, Circoviridae, and Caliciviridae were detected. Among the members of the family Picornaviridae, we found three that appear to represent new genera. Six nearly complete genomes from members of the family Parvoviridae were also obtained, including four new members of the proposed genus "Chapparvovirus", and two members of the genus Aveparvovirus. Six small circular DNA genomes were also characterized. One nearly complete genome showing a low level of sequence identity to caliciviruses was also characterized. Numerous viruses believed to infect insects, plants, and crustaceans were also identified, which were probably derived from the diet of red-crowned cranes. This study increases our understanding of the enteric virome of red-crowned cranes and provides a baseline for comparison to those of other birds or following disease outbreaks.
Project description:BACKGROUND:South Korea conducts annual national surveillance programs to detect avian influenza (AI) in domestic poultry, live bird markets, and wild birds. In March 2017, an AIV was isolated from fecal samples in an outdoor aviary flight cage in a zoo in Korea. RESULTS:Nucleotide sequencing identified the isolate as low pathogenic avian influenza virus (LPAIV) H7N7, and DNA barcoding analysis identified the host species as red-crowned crane. This isolate was designated A/red-crowned crane/Korea/H1026/2017 (H7N7). Genetic analysis and gene constellation analysis revealed that A/red-crowned crane/Korea/H1026/2017 (H7N7) showed high similarity with four H7N7 LPAIVs isolated from wild bird habitats in Seoul and Gyeonggi in early 2017. CONCLUSIONS:Considering the genetic similarity and similar collection dates of the viruses, and the fact that zoo bird cages are vulnerable to AIV, it is likely that fecal contamination from wild birds might have introduced LPAIV H7N7 into the red-crowned crane at the zoo. Therefore, our results emphasize that enhanced biosecurity measures should be employed during the wild bird migration season, and that continued surveillance should be undertaken to prevent potential threats to avian species in zoos and to humans.
Project description:The red-crowned crane (Grus japonensis) is an endangered species listed by International Union for Conservation of Nature (IUCN) HARRIS J (2013). The largest population of this species is distributed mainly in China and Russia, which is called continental population SU L (2012)-Curt D (1996). This population is migratory, which migrates from its breeding range located in Northeast China and Southern Russia, to the wintering range in the south of China to spend the winter every year. The breeding range of this species is critical for red-crowned crane to survive and maintain its population. Previous studies showed the negative effects of habitat loss and degradation on the breeding area of red-crowned crane Ma Z (1998), Claire M (2019). Climate change may also threat the survival of this endangered species. Previous studies investigated the impacts of climate change on the breeding range or wintering range in China Wu (2012), [1]. However, no study was conducted to assess the potential impacts of climate change on the whole breeding range of this species. Here, we used bioclimatic niche modeling to predict the potential breeding range of red-crowned crane under current climate conditions and project onto future climate change scenarios. Our results show that the breeding range of the continental population of red-crowned crane will shift northward over this century and lose almost all of its current actual breeding range. The climate change will also change the country owning the largest portion of breeding range from China to Russia, suggesting that Russia should take more responsibility to preserve this endangered species in the future.