Project description:In recent years, thousands of Saccharomyces cerevisiae genomes have been sequenced to varying degrees of completion. The Saccharomyces Genome Database (SGD) has long been the keeper of the original eukaryotic reference genome sequence, which was derived primarily from S. cerevisiae strain S288C. Because new technologies are pushing S. cerevisiae annotation past the limits of any system based exclusively on a single reference sequence, SGD is actively working to expand the original S. cerevisiae systematic reference sequence from a single genome to a multi-genome reference panel. We first commissioned the sequencing of additional genomes and their automated analysis using the AGAPE pipeline. Here we describe our curation strategy to produce manually reviewed high-quality genome annotations in order to elevate 11 of these additional genomes to Reference status. Database URL: http://www.yeastgenome.org/.
Project description:The use of alternative polyadenylation sites is common and affects the post-transcriptional fate of mRNA, including its stability, localization, and translation. Here we present a method for genome-wide and strand-specific mapping of poly(A) sites and quantification of RNA levels at unprecedented efficiency by using an on-cluster dark T-fill procedure on the Illumina sequencing platform. Our method outperforms former protocols in quality and throughput, and reveals new insights into polyadenylation in Saccharomyces cerevisiae. Experimental benchmark of five different protocols (3tfill, bpmI, internal, rnaseq and yoon) for genome-wide identification of polyadenylation sites in Saccharomyces cerevisiae and transcript quantification. RNA was extracted from WT cells grown in glucose (ypd) or galactose (ypgal) as carbon source. The same RNA was used for 3 independent library constructions (technical replicates, rep).
Project description:Multi-targeting priming (MTP) for genome-wide gene expression assays provides selective targeting of multiple sequences and counter-selection against undesirable sequences. We demonstrated superior performance of two MTPs compared to oligo-dT microarray profling and RNA tag sequencing the response of Saccharomyces cerevisiae to nitrogen deficiency and profiling Neurospora crassa early sexual development. Priming with MTPs in addition to oligo-dT resulted in higher sensitivity, a greater number of well-measured genes, more genes significantly differentially expressed, and a greater power to detect meager differences. Saccharomyces cerevisiae S288c was grown on two different media.
Project description:The genome of the budding yeast Saccharomyces cerevisiae was the first completely sequenced from a eukaryote. It was released in 1996 as the work of a worldwide effort of hundreds of researchers. In the time since, the yeast genome has been intensively studied by geneticists, molecular biologists, and computational scientists all over the world. Maintenance and annotation of the genome sequence have long been provided by the Saccharomyces Genome Database, one of the original model organism databases. To deepen our understanding of the eukaryotic genome, the S. cerevisiae strain S288C reference genome sequence was updated recently in its first major update since 1996. The new version, called "S288C 2010," was determined from a single yeast colony using modern sequencing technologies and serves as the anchor for further innovations in yeast genomic science.
Project description:To obtain a better understanding of the genome-wide distribution and the nature of large sequence polymorphisms (LSPs) in Saccharomyces cerevisiae, we hybridized genomic DNA of 88 haploid or homozygous diploid S. cerevisiae strains of diverse geographic origins and source substrates onto high-density tiling arrays. On the basis of loss of hybridization, we identified 384 LSPs larger than 500 bp that were located in 188 non-overlapping regions of the genome. Validation by polymerase chain reaction-amplification and/or DNA sequencing revealed that 39 LSPs were due to deletions, whereas 74 LSPs involved sequences diverged far enough from the S288c reference genome sequence as to prevent hybridization to the microarray features. The LSP locations were biased toward the subtelomeric regions of chromosomes, where high genetic variation in genes involved in transport or fermentation is thought to facilitate rapid adaptation of S. cerevisiae to new environments. The diverged LSP sequences appear to have different allelic ancestries and were in many cases identified as Saccharomyces paradoxus introgressions.
Project description:Recently, a new type of hybrid resulting from the hybridization between Saccharomyces cerevisiae and Saccharomyces kudriavzevii was described. These strains exhibit physiological properties of potential biotechnological interest. A preliminary characterization of these hybrids showed a trend to reduce the S. kudriavzevii fraction of the hybrid genome. We characterized the genomic constitution of several wine S. cerevisiae x S. kudriavzevii strains by using a combined approach based on the restriction fragment length polymorphism analysis of gene regions, comparative genome hybridizations with S. cerevisiae DNA arrays, ploidy analysis, and gene dose determination by quantitative real-time PCR. The high similarity in the genome structures of the S. cerevisiae x S. kudriavzevii hybrids under study indicates that they originated from a single hybridization event. After hybridization, the hybrid genome underwent extensive chromosomal rearrangements, including chromosome losses and the generation of chimeric chromosomes by the nonreciprocal recombination between homeologous chromosomes. These nonreciprocal recombinations between homeologous chromosomes occurred in highly conserved regions, such as Ty long terminal repeats (LTRs), rRNA regions, and conserved protein-coding genes. This study supports the hypothesis that chimeric chromosomes may have been generated by a mechanism similar to the recombination-mediated chromosome loss acting during meiosis in Saccharomyces hybrids. As a result of the selective processes acting during fermentation, hybrid genomes maintained the S. cerevisiae genome but reduced the S. kudriavzevii fraction.
Project description:We investigated the genome-wide distribution of Okazaki fragments in the commonly used laboratory Saccharomyces cerevisiae strain S288C to study the DNA replication model adopted by the budding yeast. The method based upon lambda exonuclease digestion for purification of RNA-primed replication intermediates was first improved to be suitable for the purification of Okazaki fragments. Then, we used this improved method to purify Okazaki fragments from S288C yeast cells, followed by Illumina sequencing. We found that the expected asymmetric distribution of Okazaki fragments around confirmed replication origins, which was derived from the semi-discontinuous DNA replication model, was not observed on S. cerevisiae chromosomes. Even around two highly efficient replication origins, ARS522 and ARS416, the ratios of Okazaki fragments on both strands were inconsistent with the semi-discontinuous DNA replication model. Our study supported the discontinuous DNA replication model. Besides, we also observed that Okazaki fragments were overpresented in the transcribed regions in S. cerevisiae mitochondrial genome, which indicated the interplay between transcription and DNA replication. Examination of the distribution of Okazaki fragments in Saccharomyces cerevisiae strain S288C.
Project description:Saccharomyces cerevisiae KCCM 51299, a potential probiotic yeast overproducing glutathione, has been isolated from among 272 yeast strains from the relatively safe Nuruk. The genome sequence of S. cerevisiae KCCM 51299 was analyzed and a near-complete genome (12 Mb) with 19 contigs was assembled after PacBio single-molecule real-time (SMRT) sequencing. The genome of S. cerevisiae KCCM 51299 was compared to the S. cerevisiae s288c reference genome. Additionally, genes involved in glutathione biosynthesis were identified, and the glutathione biosynthesis pathway was constructed in silico based on these genes. Furthermore, S. cerevisiae KCCM 51299 genes were compared with those in other yeast genomes. Finally, genome-scale in silico flux analysis was carried out, and a metabolic engineering strategy for glutathione biosynthesis was generated. These results provide useful information to further develop eukaryotic probiotics to overproduce glutathione.
Project description:Multi-targeting priming (MTP) for genome-wide gene expression assays provides selective targeting of multiple sequences and counter-selection against undesirable sequences. We demonstrated superior performance of two MTPs compared to oligo-dT microarray profling and RNA tag sequencing the response of Saccharomyces cerevisiae to nitrogen deficiency and profiling Neurospora crassa early sexual development. Priming with MTPs in addition to oligo-dT resulted in higher sensitivity, a greater number of well-measured genes, more genes significantly differentially expressed, and a greater power to detect meager differences. Saccharomyces cerevisiae S288c was grown on two different media and two different primers were used for reverse transcription: oligo(dT) and Multi-Targeted Primer [MTP] protoperithecia oligo(dT)+ MTP (PP2) perithecia oligo(dT)+ MTP (PT2). Two biological replicates and dye swapping
Project description:Ten years have passed since the genome of Saccharomyces cerevisiae-more precisely, the S288c strain-was completely sequenced. However, experimental work in yeast is commonly performed using strains that are of unknown genetic relationship to S288c. Here, we characterized the nucleotide-level similarity between S288c and seven commonly used lab strains (A364A, W303, FL100, CEN.PK, summation 1278b, SK1 and BY4716) using 25mer oligonucleotide microarrays that provide complete and redundant coverage of the approximately 12 Mb Saccharomyces cerevisiae genome. Using these data, we assessed the frequency and distribution of nucleotide variation in comparison to the sequenced reference genome. These data allow us to infer the relationships between experimentally important strains of yeast and provide insight for experimental designs that are sensitive to sequence variation. We propose a rational approach for near complete sequencing of strains related to the reference using these data and directed re-sequencing. These data and new visualization tools are accessible online in a new resource: the Yeast SNPs Browser (YSB; http://gbrowse.princeton.edu/cgi-bin/gbrowse/yeast_strains_snps) that is available to all researchers.