Project description:Halorhodospira halophila is among the most halophilic organisms known. It is an obligately photosynthetic and anaerobic purple sulfur bacterium that exhibits autotrophic growth up to saturated NaCl concentrations. The type strain H. halophila SL1 was isolated from a hypersaline lake in Oregon. Here we report the determination of its entire genome in a single contig. This is the first genome of a phototrophic extreme halophile. The genome consists of 2,678,452 bp, encoding 2,493 predicted genes as determined by automated genome annotation. Of the 2,407 predicted proteins, 1,905 were assigned to a putative function. Future detailed analysis of this genome promises to yield insights into the halophilic adaptations of this organism, its ability for photoautotrophic growth under extreme conditions, and its characteristic sulfur metabolism.
Project description:OBJECTIVE: To investigate the cytotoxic activity of actinomycete isolated from marine sediment. METHODS: In the present study the DNA was isolated and the ITS region of 16s rRNA was amplified by polymerase chain reaction, using two universal bacterial primers, 1492R (5'-GGTTACCTTGTTAC GACTT-3') and Eubac27F (5'-AGAGTTTGATCCTGGCTC AG-3'). The amplified products were purified using TIANgel mini purification kit, ligated to MD18-T simple vector (TaKaRa), and transformed into competent cells of Escherichia coli DH5?. 16S rRNA gene fragment was sequenced using forward primer M13F (-47) and reverse primer M13R (-48). Blast search sequence similarity was found against the existing non-redundant nucleotide sequence database thus, identified as Streptomyces sp SU, Streptomyces rubralavandulae strain SU1, Streptomyces cacaoi strain SU2, Streptomyces cavourensis strain SU3, Streptomyces avidinii strain SU4, Streptomyces globisporus strain SU5, Streptomyces variabilis strain SU6, Streptomyces coelicolor strain SU 7. Among the eight identified isolates, one actinomycete Streptomyces avidinii strain SU4 was selected for further study. RESULTS: Crude extract of the actinomycete isolate exhibited IC50 in 64.5 µg against Hep-2 cell line, 250 µg in VERO cell line. This value is very close to the criteria of cytotoxicity activity for the crude extracts, as established by the American National Cancer Institute (NCI) is in IC50 < 30 µg/mL. The GC MS analysis showed that the active principle might be 1,2-benzenedicarboxylic acid, bis(2-methylpropyl) ester (12.17%), isooctyl phthalate (15.29%) with the retention time 15.642 and 21.612, respectively. CONCLUSIONS: This study clearly proves that the marine sediment derived actinomycetes with bioactive metabolites can be expected to provide high quality biological material for high throughout biochemical and anticancer screening programs. These results help us to conclude that the potential of using metabolic engineering and post genomic approaches to isolate more bioactive compounds and make their possible commercial application is not far off.
Project description:Enterobacter sp. strain EA-1 is an electrochemically active bacterium isolated from tropical sediment in Singapore. Here, the annotated draft genome assembly of the bacterium is reported. Whole-genome comparison indicates that Enterobacter sp. EA-1, along with a previously sequenced Enterobacter isolate from East Asia, forms a distinct clade within the Enterobacter genus.
Project description:Suitability of CATMA for the analysis of the transcriptome of Thellungiella halophila - flower/leaf transcriptomic comparison in Arabidopsis and Thellungiella. adt09-01_thellungiella - thelungiella Overall design: 2 dye-swap - CATMA arrays
Project description:In this report, we present a draft genome of 2,886,173bp of an Exiguobacterium aurantiacum strain PN47 isolate from the sediment of a saline pond named "Salar del Huasco" in the Altiplano in the North of Chile. Strain PN47 encodes adaptive characteristics enabling survival in extreme environmental conditions of high heavy metal and salt concentrations and high alkalinity.
Project description:We report the isolation of a pinnacle-forming cyanobacterium isolated from a microbial mat covering the sediment surface at Little Salt Spring-a flooded sinkhole in Florida with a perennially microoxic and sulfidic water column. The draft genome of the isolate encodes all of the enzymatic machinery necessary for both oxygenic and anoxygenic photosynthesis, as well as genes for methylating hopanoids at the C-2 position. The physiological response of the isolate to H2S is complex: (i) no induction time is necessary for anoxygenic photosynthesis; (ii) rates of anoxygenic photosynthesis are regulated by both H2S and irradiance; (iii) O2 production is inhibited by H2S concentrations as low as 1??M and the recovery rate of oxygenic photosynthesis is dependent on irradiance; (iv) under the optimal light conditions for oxygenic photosynthesis, rates of anoxygenic photosynthesis are nearly double those of oxygenic photosynthesis. We hypothesize that the specific adaptation mechanisms of the isolate to H2S emerged from a close spatial interaction with sulfate-reducing bacteria. The new isolate, Leptolyngbya sp. strain hensonii, is not closely related to other well-characterized Cyanobacteria that can perform anoxygenic photosynthesis, which further highlights the need to characterize the diversity and biogeography of metabolically versatile Cyanobacteria. The isolate will be an ideal model organism for exploring the adaptation of Cyanobacteria to sulfidic conditions.
Project description:Soil salinization is a matter of concern worldwide. It can eventually lead to the desertification of land and severely damage local agricultural production and the ecological environment. Betula halophila is a tree with high salt tolerance, so it is of importance to understand and discover the salt responsive genes of B. halophila for breeding salinity resistant varieties of trees. However, there is no report on the transcriptome in response to salt stress in B. halophila. Using Illumina sequencing platform, approximately 460 M raw reads were generated and assembled into 117,091 unigenes. Among these unigenes, 64,551 unigenes (55.12%) were annotated with gene descriptions, while the other 44.88% were unknown. 168 up-regulated genes and 351 down-regulated genes were identified, respectively. These Differentially Expressed Genes (DEGs) involved in multiple pathways including the Salt Overly Sensitive (SOS) pathway, ion transport and uptake, antioxidant enzyme, ABA signal pathway and so on. The gene ontology (GO) enrichments suggested that the DEGs were mainly involved in a plant-type cell wall organization biological process, cell wall cellular component, and structural constituent of cell wall molecular function. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment showed that the top-four enriched pathways were 'Fatty acid elongation', 'Ribosome', 'Sphingolipid metabolism' and 'Flavonoid biosynthesis'. The expression patterns of sixteen DEGs were analyzed by qRT-PCR to verify the RNA-seq data. Among them, the transcription factor AT-Hook Motif Nuclear Localized gene and dehydrins might play an important role in response to salt stress in B. halophila. Our results provide an important gene resource to breed salt tolerant plants and useful information for further elucidation of the molecular mechanism of salt tolerance in B. halophila.
Project description:Methanethiol (MT) and dimethyl sulfide (DMS) have been shown to be the dominant volatile organic sulfur compounds in freshwater sediments. Previous research demonstrated that in these habitats MT and DMS are derived mainly from the methylation of sulfide. In order to identify the microorganisms that are responsible for this type of MT and DMS formation, several sulfide-rich freshwater sediments were amended with two potential methyl group-donating compounds, syringate and 3,4,5-trimethoxybenzoate (0.5 mM). The addition of these methoxylated aromatic compounds resulted in excess accumulation of MT and DMS in all sediment slurries even though methanogenic consumption of MT and DMS occurred. From one of the sediment slurries tested, a novel anaerobic bacterium was isolated with syringate as the sole carbon source. The strain, designated Parasporobacterium paucivorans, produced MT and DMS from the methoxy groups of syringate. The hydroxylated aromatic residue (gallate) was converted to acetate and butyrate. Like Sporobacterium olearium, another methoxylated aromatic compound-degrading bacterium, the isolate is a member of the XIVa cluster of the low-GC-content Clostridiales group. However, the new isolate differs from all other known methoxylated aromatic compound-degrading bacteria because it was able to degrade syringate in significant amounts only in the presence of sulfide.
Project description:Suitability of CATMA for the analysis of the transcriptome of Thellungiella halophila - flower/leaf transcriptomic comparison in Arabidopsis and Thellungiella. adt09-01_thellungiella - thelungiella 2 dye-swap - CATMA arrays
Project description:Genetic analysis in the IL10-deficient mouse model revealed a modifier locus of experimental inflammatory bowel disease (IBD) on chromosome 18, with the allele of the strain C3H/HeJBir (C3Bir) conferring resistance and the allele of C57BL/6J (B6) conferring susceptibility. Differential Cd14 expression was associated with this background specific susceptibility to intestinal inflammation. Polymorphisms of the Cd14 promoter were found to be likely causative for strain specific expression, and Cd14-knockout mice revealed a protective role of this gene-product in experimental IBD. In this study, luciferase reporter assays confirmed an increased activity of the C3Bir derived Cd14 promoter compared to the one of B6. Promoter truncation experiments and site-directed mutagenesis in both strains resulted in reduced Cd14 promoter activity and confirmed that a central AP1 and the proximal SP1 transcription factor binding sites mediated the basal activity of the Cd14 promoter in the mouse. Moreover, a T to C exchange at position -259 replaced putative STAT1 and CDX1 sites in the Cd14 promoter from B6 by a SP2 site in C3Bir. Ablation of the Sp2 site through truncation was associated with a decreased promoter activity. Site-directed mutagenesis also demonstrated that the inactivation of SP2 led to a substantial loss of promoter activity in C3Bir. Performing electrophoretic mobility shift and supershift assays demonstrated interaction of SP2 with its potential binding site. In addition, retroviral-mediated overexpression of the SP2 transcription factor in primary bone marrow macrophages derived from C3Bir mice caused a significant increase in Cd14 transcription. These data characterized SP2 as important factor responsible for higher Cd14 expression and reduced IBD susceptibility mediated by the C3Bir allele.