Project description:Transcription profile of Escherichia coli cells in biofilms under static batch culture was compared to that of E. coli cells in planktonic cultures. Both E. coli biofilm and planktonic cultures were cultivated for 18 h in 10% Luria-Bertani broth at room temperature (20 degree Celsius). Biofilms were grown in static batch culture in petri dishes. Both planktonic culture and biofilms were homogenized and run through a separated protocol.
Project description:We performed comparative analysis of transcriptomes of S. mutans in single biofilms and in mixed-biofilms with A. actinomycetemcomitans. We also compared the transcriptomic profiles of A. actinomycetemcomitans in single biofilms and A. actinomycetemcomitans in mixed biofilms with S. mutans. Finally we looked at the changes in gene expression in both organisms in time.
Project description:Transcription profile of Escherichia coli cells in biofilms under static batch culture was compared to that of E. coli cells in planktonic cultures. Both E. coli biofilm and planktonic cultures were cultivated for 18 h in 10% Luria-Bertani broth at room temperature (20 degree Celsius). Biofilms were grown in static batch culture in petri dishes. Both planktonic culture and biofilms were homogenized and run through a separated protocol. Two condition experiments: E. coli biofilm vs E. coli planktonic cultures. Two biological replicates with independently grown and harvested biofilms or planktonic cultures. Each biological replicate has two technical replicates of hybridization on microarray slides. Each slide has three built-in replicates for each probe.
Project description:The physiological and transcriptional response of Nitrosomonas europaea biofilms to phenol and toluene was examined and compared to suspended cells. Biofilms were grown in Drip Flow Biofilm Reactors under continuous flow conditions of growth medium containing ammonia as growth substrate. The responses of N. europaea biofilms to the aromatic hydrocarbons phenol and toluene were determined during short-term (3 h) additions of each compound to the biofilms. Ammonia oxidation in the biofilms was inhibited 50% by 60 uM phenol and 100 uM toluene. These concentrations were chosen for microarray analysis of phenol- and toluene-exposed N. europaea biofilms. Liquid batch cultures of exponentially growing N. europaea cells were harvested alongside the biofilms to determine differential gene expression between attached and suspended growth of N. europaea.
Project description:We grew Pseudomonas aeruginosa biofilms on CFBE41o- human airway cells in culture, and we treated these biofilms with tobramycin. Microarray analysis was performed to gain an understanding of the global transcriptional changes that occur during antibiotic treatment. Keywords: Antibiotic Response
Project description:Gene expression changes between outside and inside of biofilms were investigated. The gene expression was compared between the outside and inside of the biofilms. At the same time, the gene expressions were also compared with exponential phase and stationary phase in planktonic cells. The gene expression analysis showed that the physiological activities were higher at the outside of the biofilms than those at the inside of the biofilms. The genes induced at the ouside of the biofilms included genes involved in the stress responses and adhesions. Keywords: different growth phase
Project description:To explain enhanced biofilm formation and increased dissemination of S. epidermidis in mixed-species biofilms, microarrays were used to explore differential gene expression of S. epidermidis in mixed-species biofilms. One sample from single species biofilm (S1) and mixed-species biofilm (SC2) were excluded from analyses for outliers. We observed upregulation (2.7%) and down regulation (6%) of S. epidermidis genes in mixed-species biofilms. Autolysis repressors lrgA and lrgB were down regulated 36-fold and 27-fold respectively and was associated with increased eDNA possibly due to enhanced autolysis in mixed-species biofilms. These data suggest that bacterial autolysis and release of eDNA in the biofilm matrix may be responsible for enhancement and dissemination of mixed-species biofilms of S. epidermidis and C. albicans.
Project description:We examined the differential gene expression of Staphylococcus epidermidis and Staphylococcus epidermidis in dual species biofilms. Therefore, we performed RNA-Seq on single and dual species biofilms and we compared the gene expression levels in dual species biofilms to those in single species biofilms.