Project description:The glycolytic enzyme, pyruvate kinase Pyk1 maintains telomere heterochromatin by phosphorylating histone H3T11 (H3pT11), which promotes SIR (silent information regulator) complex binding at telomeres and prevents autophagy-mediated Sir2 degradation. However, the exact action mechanism of H3pT11 is poorly understood. Here, we report that H3pT11 directly inhibits Dot1-catalyzed H3K79 tri-methylation (H3K79me3) and uncover how this histone crosstalk regulates autophagy and telomere silencing. Mechanistically, Pyk1-catalyzed H3pT11 directly reduces the binding of Dot1 to chromatin and inhibits Dot1-catalyzed H3K79me3, which leads to transcriptional repression of autophagy genes and reduced autophagy. Despite the antagonism between H3pT11 and H3K79me3, they work together to promote the binding of SIR complex at telomeres to maintain telomere silencing. Furthermore, we identify Reb1 as a telomere-associated factor that recruits Pyk1-containing SESAME (Serine-responsive SAM36 taining Metabolic Enzyme) complex to telomere regions to phosphorylate H3T11 and prevent the invasion of H3K79me3 from euchromatin into heterochromatin to maintain telomere silencing. Together, these results uncover a novel histone crosstalk and provide insights into dynamic regulation of silent heterochromatin and autophagy in response to cell metabolism.
Project description:The glycolytic enzyme, pyruvate kinase Pyk1 maintains telomere heterochromatin by phosphorylating histone H3T11 (H3pT11), which promotes SIR (silent information regulator) complex binding at telomeres and prevents autophagy-mediated Sir2 degradation. However, the exact action mechanism of H3pT11 is poorly understood. Here, we identify Dot1-catalyzed H3K79 tri-methylation (H3K79me3) as the downstream effector of H3pT11 and uncover how this histone crosstalk regulates autophagy and telomere silencing. Mechanistically, Pyk1-catalyzed H3pT11 directly reduces the binding of Dot1 to chromatin and inhibits Dot1-catalyzed H3K79me3, which leads to transcriptional repression of autophagy genes and reduced autophagy. Despite the antagonism between H3pT11 and H3K79me3, they synergically promote the binding of SIR complex at telomeres to maintain telomere silencing. Furthermore, we identify Reb1 as a telomere-associated factor that recruits Pyk1-containing SESAME (Serine-responsive SAM-containing Metabolic Enzyme) complex to telomere regions to phosphorylate H3T11 and prevent the invasion of H3K79me3 from euchromatin into heterochromatin to maintain telomere silencing. Together, these results uncover a novel histone crosstalk and provide insights into dynamic regulation of silent heterochromatin and autophagy in response to cell metabolism.
Project description:The glycolytic enzyme, pyruvate kinase Pyk1 maintains telomere heterochromatin by phosphorylating histone H3T11 (H3pT11), which promotes SIR (silent information regulator) complex binding at telomeres and prevents autophagy-mediated Sir2 degradation. However, the exact action mechanism of H3pT11 is poorly understood. Here, we identify Dot1-catalyzed H3K79 tri-methylation (H3K79me3) as the downstream effector of H3pT11 and uncover how this histone crosstalk regulates autophagy and telomere silencing. Mechanistically, Pyk1-catalyzed H3pT11 directly reduces the binding of Dot1 to chromatin and inhibits Dot1-catalyzed H3K79me3, which leads to transcriptional repression of autophagy genes and reduced autophagy. Despite the antagonism between H3pT11 and H3K79me3, they synergically promote the binding of SIR complex at telomeres to maintain telomere silencing. Furthermore, we identify Reb1 as a telomere-associated factor that recruits Pyk1-containing SESAME (Serine-responsive SAM-containing Metabolic Enzyme) complex to telomere regions to phosphorylate H3T11 and prevent the invasion of H3K79me3 from euchromatin into heterochromatin to maintain telomere silencing. Together, these results uncover a novel histone crosstalk and provide insights into dynamic regulation of silent heterochromatin and autophagy in response to cell metabolism.
Project description:The glycolytic enzyme, pyruvate kinase Pyk1 maintains telomere heterochromatin by phosphorylating histone H3T11 (H3pT11), which promotes SIR (silent information regulator) complex binding at telomeres and prevents autophagy-mediated Sir2 degradation. However, the exact action mechanism of H3pT11 is poorly understood. Here, we identify Dot1-catalyzed H3K79 tri-methylation (H3K79me3) as the downstream effector of H3pT11 and uncover how this histone crosstalk regulates autophagy and telomere silencing. Mechanistically, Pyk1-catalyzed H3pT11 directly reduces the binding of Dot1 to chromatin and inhibits Dot1-catalyzed H3K79me3, which leads to transcriptional repression of autophagy genes and reduced autophagy. Despite the antagonism between H3pT11 and H3K79me3, they synergically promote the binding of SIR complex at telomeres to maintain telomere silencing. Furthermore, we identify Reb1 as a telomere-associated factor that recruits Pyk1-containing SESAME (Serine-responsive SAM-containing Metabolic Enzyme) complex to telomere regions to phosphorylate H3T11 and prevent the invasion of H3K79me3 from euchromatin into heterochromatin to maintain telomere silencing. Together, these results uncover a novel histone crosstalk and provide insights into dynamic regulation of silent heterochromatin and autophagy in response to cell metabolism.
Project description:Telomeres are organized into a heterochromatin structure and maintenance of silent heterochromatin is required for chromosome stability. How telomere heterochromatin is dynamically regulated in response to stimuli remains unknown. Pyruvate kinase Pyk1 forms a complex, named SESAME (Serine-responsive SAM-containing Metabolic Enzyme complex) to regulate gene expression by phosphorylating histone H3T11 (H3pT11). Here, we identified a novel function of SESAME in regulating telomere heterochromatin structure. SESAME phosphorylates H3T11 at telomeres, which promotes SIR (silent information regulator) complex assembly at telomeres and protects Sir2 from degradation by autophagy. Moreover, SESAMEcatalyzed H3pT11 directly represses autophagy-related gene expression to further prevent autophagy-mediated Sir2 degradation. By promoting H3pT11, serine increases Sir2 protein levels and enhances telomere silencing. Loss of H3pT11 leads to reduced Sir2 and compromised telomere silencing during chronological aging. Together, our study provides insights into dynamic regulation of silent heterochromatin by histone modifications and autophagy in response to cell metabolism and aging.
Project description:Cells need to coordinate gene expression with their metabolic states to maintain cell homeostasis and growth. However, how cells transduce nutrient availability to appropriate gene expression response via histone modifications remains poorly understood. Here, we report that glycolysis promotes H3K4me3 by activating Tpk2, the catalytic subunit of protein kinase A (PKA) via the Ras-cyclic AMP (cAMP) pathway. Further study showed that Tpk2 antagonizes Jhd2-catalyzed H3K4 demethylation by phosphorylating Jhd2 at S321 and S340 in response to glucose availability.Mechanistically, Tpk2-catalyzed Jhd2 phosphorylation inhibits its overall binding to chromatin and promotes its polyubiquitination by the E3 ubiquitin ligase Not4 and degradation by the proteasome. In addition, Tpk2-catalyzed Jhd2 phosphorylation also maintains H3K14ac by preventing the binding of Rpd3 to chromatin. By inhibiting the activity of Jhd2 and Rpd3, Tpk2-catalyzed Jhd2 phosphorylation regulates gene expression and promotes autophagy. Thus, regulation of Jhd2 by the Ras-cAMP-PKA pathway shed lights on how cells rewire their biological responses to glucose availability.
Project description:Cells need to coordinate gene expression with their metabolic states to maintain cell homeostasis and growth. However, how cells transduce nutrient availability to appropriate gene expression response via histone modifications remains poorly understood. Here, we report that glycolysis promotes H3K4me3 by activating Tpk2, the catalytic subunit of protein kinase A (PKA) via the Ras-cyclic AMP (cAMP) pathway. Further study showed that Tpk2 antagonizes Jhd2-catalyzed H3K4 demethylation by phosphorylating Jhd2 at S321 and S340 in response to glucose availability.Mechanistically, Tpk2-catalyzed Jhd2 phosphorylation inhibits its overall binding to chromatin and promotes its polyubiquitination by the E3 ubiquitin ligase Not4 and degradation by the proteasome. In addition, Tpk2-catalyzed Jhd2 phosphorylation also maintains H3K14ac by preventing the binding of Rpd3 to chromatin. By inhibiting the activity of Jhd2 and Rpd3, Tpk2-catalyzed Jhd2 phosphorylation regulates gene expression and promotes autophagy. Thus, regulation of Jhd2 by the Ras-cAMP-PKA pathway shed lights on how cells rewire their biological responses to glucose availability.
Project description:Publication abstract: Telomeres, the protective ends of eukaryotic chromosomes, are replicated through concerted actions by conventional DNA polymerases and telomerase, though the regulation of this process is not fully understood. Telomere replication requires (C)-Stn1-Ten1, a telomere ssDNA-binding complex that is homologous to RPA. Here, we show that the evolutionarily conserved phosphatase Ssu72 is responsible for terminating the cycle of telomere replication in fission yeast. Ssu72 controls the recruitment of Stn1 to telomeres by regulating Stn1 phosphorylation at S74, a residue that lies within the conserved OB fold domain. Consequently, ssu72Δ mutants are defective in telomere replication and exhibit long 3′ overhangs, which are indicative of defective lagging strand DNA synthesis. We also show that hSSU72 regulates telomerase activation in human cells by controlling the recruitment of hSTN1 to telomeres. Thus, in this study, we demonstrate a previously unknown yet conserved role for the phosphatase SSU72, whereby this enzyme controls telomere homeostasis by activating lagging strand DNA synthesis, thus terminating the cycle of telomere replication. Summary of MS experiment: Stn1 protein was tagged in the C-terminus with 13-myc tag and purified by immunoprecipitation. The purified extracts were separated by SDS-PAGE and proteins between 63 and 75 kDa were excised and in-gel digested. Tryptic peptides were analyzed by LC-MS/MS using an AB Sciex TripleTOF 6600 mass spectrometer upon separation by nanoLC-MS using an Ekspert 425 nanoLC with cHiPLC. Stn1 protein was identified with 48% of coverage and Serine-74 was found to be phosphorylated.
Project description:Telomere chromatin structure is pivotal for maintaining genome stability by regulating the binding of telomere-associated proteins and inhibition of a DNA damage response. In yeast, the silent information regulator (Sir) proteins bind to terminal telomeric repeats and to subtelomeric X-elements resulting in histone deacetylation and transcriptional silencing. Herein, we show that sir2 mutant strains display a very specific loss of a nucleosome residing in the X-element. Most yeast telomeres contain an X-element and the nucleosome occupancy defect in sir2 mutants is remarkably consistent between different telomeres.