ABSTRACT: Sorted cell/s from microbial mat in Octopus Spring, Yellowstone National Park, Wyoming, United States - Uncultured microbe JGI_YuBhay.Octo06.RedA.3.N3 metagenome
Project description:Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene segments was used to profile microbial populations inhabiting different temperature regions in the microbial mat community of Octopus Spring, Yellowstone National Park. DGGE allowed a rapid evaluation of the distributions of amplifiable sequence types. Profiles were essentially identical within regions of the mat defined by one temperature range but varied between sites with different temperature ranges. Individual DGGE bands were sequenced, and the sequences were compared with those previously obtained from the mat by cloning and from cultivated Octopus Spring isolates. Two known cyanobacterial populations and one known green nonsulfur bacterium-like population were detected by DGGE, as were many new cyanobacterial and green nonsulfur and green sulfur bacterium-like populations and a novel bacterial population of uncertain phylogenetic affiliation. The distributions of several cyanobacterial populations compared favorably with results obtained previously by oligonucleotide probe analyses and suggest that adaptation to temperature has occurred among cyanobacteria which are phylogenetically very similar.
Project description:Recent molecular studies have shown a great disparity between naturally occurring and cultivated microorganisms. We investigated the basis for disparity by studying thermophilic unicellular cyanobacteria whose morphologic simplicity suggested that a single cosmopolitan species exists in hot spring microbial mats worldwide. We found that partial 16S rRNA sequences for all thermophilic Synechococcus culture collection strains from diverse habitats are identical. Through oligonucleotide probe analysis and cultivation, we provide evidence that this species is strongly selected for in laboratory culture to the exclusion of many more-predominant cyanobacterial species coexisting in the Octopus Spring mat in Yellowstone National Park. The phylogenetic diversity among Octopus Spring cyanobacteria is of similar magnitude to that exhibited by all cyanobacteria so far investigated. We obtained axenic isolates of two predominant cyanobacterial species by diluting inocula prior to enrichment. One isolate has a 16S rRNA sequence we have not yet detected by cloning. The other has a 16S rRNA sequence identical to a new cloned sequence we report herein. This is the first cultivated species whose 16S rRNA sequence has been detected in this mat system by cloning. We infer that biodiversity within this community is linked to guild structure.
Project description:Denaturing gradient gel electrophoresis analysis of PCR-amplified 16S rRNA gene segments was used to examine the distributions of bacterial populations within a hot spring microbial mat (Octopus Spring, Yellowstone National Park). Populations at sites along the thermal gradient of the spring's effluent channel were surveyed at seasonal intervals. No shift in the thermal gradient was detected, and populations at spatially or temperature-defined sites exhibited only slight changes over the annual sampling period. A new cyanobacterial 16S rRNA sequence type was detected at temperatures from 63 to 75 degrees C. A new green nonsulfur bacterium-like sequence type was also detected at temperatures from 53 to 62 degrees C. Genetically unique though closely related cyanobacterial and green nonsulfur bacterium-like populations were successively distributed along the thermal gradient of the Octopus Spring effluent channel. At least two cyanobacterial populations were detected at each site; however, a limited ability to detect some cyanobacterial populations suggests that only dominant populations were observed.
Project description:A novel thermophilic, microaerophilic, anoxygenic, and chlorophototrophic member of the phylum Acidobacteria, Chloracidobacterium thermophilum strain B(T), was isolated from a cyanobacterial enrichment culture derived from microbial mats associated with Octopus Spring, Yellowstone National Park, Wyoming. C. thermophilum is strictly dependent on light and oxygen and grows optimally as a photoheterotroph at irradiance values between 20 and 50 ?mol photons m(-2) s(-1). C. thermophilum is unable to synthesize branched-chain amino acids (AAs), l-lysine, and vitamin B12, which are required for growth. Although the organism lacks genes for autotrophic carbon fixation, bicarbonate is also required. Mixtures of other AAs and 2-oxoglutarate stimulate growth. As suggested from genomic sequence data, C. thermophilum requires a reduced sulfur source such as thioglycolate, cysteine, methionine, or thiosulfate. The organism can be grown in a defined medium at 51(?)C (Topt; range 44-58(?)C) in the pH range 5.5-9.5 (pHopt = ?7.0). Using the defined growth medium and optimal conditions, it was possible to isolate new C. thermophilum strains directly from samples of hot spring mats in Yellowstone National Park, Wyoming. The new isolates differ from the type strain with respect to pigment composition, morphology in liquid culture, and temperature adaptation.
Project description:The diversity of aerobic chemoorganotrophic bacteria inhabiting the Octopus Spring cyanobacterial mat community (Yellowstone National Park) was examined by using serial-dilution enrichment culture and a variety of enrichment conditions to cultivate the numerically significant microbial populations. The most abundant bacterial populations cultivated from dilutions to extinction were obtained from enrichment flasks which contained 9.0 x 10(2) primary producer (Synechococcus spp.) cells in the inoculum. Two isolates exhibited 16S rRNA nucleotide sequences typical of beta-proteobacteria. One of these isolates contained a 16S rRNA sequence identical to a sequence type previously observed in the mat by molecular retrieval techniques. Both are distantly related to a new sequence directly retrieved from the mat and contributed by a beta-proteobacterial community member. Phenotypically diverse gram-positive isolates genetically similar to Bacillus flavothermus were obtained from a variety of dilutions and enrichment types. These isolates exhibited identical 16S rRNA nucleotide sequences through a variable region of the molecule. Of the three unique sequences observed, only one had been previously retrieved from the mat, illustrating both the inability of the cultivation methods to describe the composition of a microbial community and the limitations of the ability of molecular retrieval techniques to describe populations which may be less abundant in microbial communities.
Project description:We examined the population of unicellular cyanobacteria (Synechococcus) in the upper 3-mm vertical interval of a 68 degrees C region of a microbial mat in a hot spring effluent channel (Yellowstone National Park, Wyoming). Fluorescence microscopy and microsensor measurements of O(2) and oxygenic photosynthesis demonstrated the existence of physiologically distinct Synechococcus populations at different depths along a light gradient quantified by scalar irradiance microprobes. Molecular methods were used to evaluate whether physiologically distinct populations could be correlated with genetically distinct populations over the vertical interval. We were unable to identify patterns in genetic variation in Synechococcus 16S rRNA sequences that correlate with different vertically distributed populations. However, patterns of variation at the internal transcribed spacer locus separating 16S and 23S rRNA genes suggested the existence of closely related but genetically distinct populations corresponding to different functional populations occurring at different depths.
Project description:Genome sequences of two Synechococcus ecotypes inhabiting the Octopus Spring microbial mat in Yellowstone National Park revealed the presence of all genes required for nitrogenase biosynthesis. We demonstrate that nif genes of the Synechococcus ecotypes are expressed in situ in a region of the mat that varies in temperature from 53.5 degrees C to 63.4 degrees C (average 60 degrees C); transcripts are only detected at the end of the day when the mat becomes anoxic. Nitrogenase activity in mat samples was also detected in the evening. Hitherto, N2 fixation in hot spring mats was attributed either to filamentous cyanobacteria (not present at >50 degrees C in these mats) or to heterotrophic bacteria. To explore how energy-generating processes of the Synechococcus ecotypes track natural light and O2 conditions, we evaluated accumulation of transcripts encoding proteins involved in photosynthesis, respiration, and fermentation. Transcripts from photosynthesis (cpcF, cpcE, psaB, and psbB) and respiration (coxA and cydA) genes declined in the evening. In contrast, transcripts encoding enzymes that may participate in fermentation fell into two categories; some (ldh, pdhB, ald, and ackA) decreased in the evening, whereas others (pflB, pflA, adhE, and acs) increased at the end of the day and remained high into the night. Energy required for N2 fixation during the night may be derived from fermentation pathways that become prominent as the mat becomes anoxic. In a broader context, our data suggest that there are critical regulatory switches in situ that are linked to the diel cycle and that these switches alter many metabolic processes within the microbial mat.
Project description:Phototrophic microbial mat communities from 60°C and 65°C regions in the effluent channels of Mushroom and Octopus Springs (Yellowstone National Park, WY, USA) were investigated by shotgun metagenomic sequencing. Analyses of assembled metagenomic sequences resolved six dominant chlorophototrophic populations and permitted the discovery and characterization of undescribed but predominant community members and their physiological potential. Linkage of phylogenetic marker genes and functional genes showed novel chlorophototrophic bacteria belonging to uncharacterized lineages within the order Chlorobiales and within the Kingdom Chloroflexi. The latter is the first chlorophototrophic member of Kingdom Chloroflexi that lies outside the monophyletic group of chlorophototrophs of the Order Chloroflexales. Direct comparison of unassembled metagenomic sequences to genomes of representative isolates showed extensive genetic diversity, genomic rearrangements and novel physiological potential in native populations as compared with genomic references. Synechococcus spp. metagenomic sequences showed a high degree of synteny with the reference genomes of Synechococcus spp. strains A and B', but synteny declined with decreasing sequence relatedness to these references. There was evidence of horizontal gene transfer among native populations, but the frequency of these events was inversely proportional to phylogenetic relatedness.
Project description:This review summarizes a decade of research in which we have used molecular methods, in conjunction with more traditional approaches, to study hot spring cyanobacterial mats as models for understanding principles of microbial community ecology. Molecular methods reveal that the composition of these communities is grossly oversimplified by microscopic and cultivation methods. For example, none of 31 unique 16S rRNA sequences detected in the Octopus Spring mat, Yellowstone National Park, matches that of any prokaryote previously cultivated from geothermal systems; 11 are contributed by genetically diverse cyanobacteria, even though a single cyanobacterial species was suspected based on morphologic and culture analysis. By studying the basis for the incongruity between culture and molecular samplings of community composition, we are beginning to cultivate isolates whose 16S rRNA sequences are readily detected. By placing the genetic diversity detected in context with the well-defined natural environmental gradients typical of hot spring mat systems, the relationship between gene and species diversity is clarified and ecological patterns of species occurrence emerge. By combining these ecological patterns with the evolutionary patterns inherently revealed by phylogenetic analysis of gene sequence data, we find that it may be possible to understand microbial biodiversity within these systems by using principles similar to those developed by evolutionary ecologists to understand biodiversity of larger species. We hope that such an approach guides microbial ecologists to a more realistic and predictive understanding of microbial species occurrence and responsiveness in both natural and disturbed habitats.
Project description:Roseiflexus sp. strains were cultivated from a microbial mat of an alkaline siliceous hot spring in Yellowstone National Park. These strains are closely related to predominant filamentous anoxygenic phototrophs found in the mat, as judged by the similarity of small-subunit rRNA, lipid distributions, and genomic and metagenomic sequences. Like a Japanese isolate, R. castenholzii, the Yellowstone isolates contain bacteriochlorophyll a, but not bacteriochlorophyll c or chlorosomes, and grow photoheterotrophically or chemoheterotrophically under dark aerobic conditions. The genome of one isolate, Roseiflexus sp. strain RS1, contains genes necessary to support these metabolisms. This genome also contains genes encoding the 3-hydroxypropionate pathway for CO(2) fixation and a hydrogenase, which might enable photoautotrophic metabolism, even though neither isolate could be grown photoautotrophically with H(2) or H(2)S as a possible electron donor. The isolates exhibit temperature, pH, and sulfide preferences typical of their habitat. Lipids produced by these isolates matched much better with mat lipids than do lipids produced by R. castenholzii or Chloroflexus isolates.