Project description:Here, we present the complete genome sequences of two Zika virus (ZIKV) strains, Zika virus/Homo sapiens-tc/THA/2014/SV0127-14 and Zika virus/H. sapiens-tc/PHL/2012/CPC-0740, isolated from the blood of patients collected in Thailand, 2014, and the Philippines, 2012, respectively. Sequencing and phylogenetic analysis showed that both strains belong to the Asian lineage.
Project description:AIM:To investigate the biological function of complete S protein and to look for proteins interacting with complete S protein in hepatocytes. METHODS:We constructed bait plasmid expressing complete S protein of HBV by cloning the gene of complete S protein into pGBKT7, then the recombinant plasmid DNA was transformed into yeast AH109 (a type). The transformed yeast AH109 was mated with yeast Y187 (alpha type) containing liver cDNA library plasmid in 2XYPDA medium. Diploid yeast was plated on synthetic dropout nutrient medium (SD/-Trp-Leu-His-Ade) containing X-alpha-gal for selection and screening. After extracting and sequencing of plasmids from positive (blue) colonies, we underwent sequence analysis by bioinformatics. RESULTS:Nineteen colonies were selected and sequenced. Among them, five colonies were Homo sapiens solute carrier family 25, member 23 (SLC25A23), one was Homo sapiens calreticulin, one was human serum albumin (ALB) gene, one was Homo sapiens metallothionein 2A, two were Homo sapiens betaine-homocysteine methyltransferase, three were Homo sapiens Na(+) and H(+) coupled amino acid transport system N, one was Homo sapiens CD81 antigen (target of anti-proliferative antibody 1) (CD81), three were Homo sapiens diazepam binding inhibitor, two colonies were new genes with unknown function. CONCLUSION:The yeast-two hybrid system is an effective method for identifying hepatocyte proteins interacting with complete S protein of HBV. The complete S protein may bind to different proteins i.e., its multiple functions in vivo.
Project description:AIM: To explore the molecular mechanisms deregulated by high mobility group protein A2 (HMGA2) gene silencing in retinoblastoma (RB) cells. METHODS: Synthetic anti-HMGA2 short interfering RNA (siRNA) was used to silence the HMGA2 gene in cultured Y79 RB cells that were subjected to whole genome microarray analysis. The expression of differentially regulated key genes was confirmed with quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) in post-silenced RB cell lines (Y79 and WERI Rb1). These deregulated genes were compared for their constitutive expression in primary RB tumors (n=10). Zymographic determination of matrix metalloproteinase (MMP) activity was performed in RB cells. A cell cycle assay and a proliferation assay were performed in post-transfected RB cells. RESULTS: HMGA2 gene silencing in cultured RB cells results in reduced cell proliferation and transition in the G1/S phase. The whole genome microarray analysis of HMGA2 silenced Y79 cells revealed overall upregulation of 1,132 genes (≥ 1.0 fold) and downregulation of 1,562 genes (≤ -1.0 fold). Specific quantitative pathway analysis of the deregulated genes (using Biointerpreter) revealed 150 upregulated genes and 77 downregulated genes (≥ 1.0 fold) involved in vital pathways, namely, mitogen-activated protein kinase, Janus kinase/signal transducers and activators of transcription, Ras pathway, Ras-induced extracellular signal-regulated protein kinases 1 and 2, and tumor protein p53. The differential expression of genes obtained from microarray analysis (Homo sapiens ELK1, member of ETS oncogene family [ELK1], Homo sapiens cyclin-dependent kinase 6 [CDK6], Homo sapiens E2F transcription factor 4, p107/p130-binding [E2F4], Homo sapiens G-2 and S-phase expressed 1 [GTSE1], Damage-regulated autophagy modulator [DRAM], Homo sapiens cadherin 1, type 1,E-cadherin (epithelial) [CDH1], Homo sapiens snail homolog 1 (Drosophila) [SNAI1], Homo sapiens matrix metallopeptidase 2 [MMP2], and Homo sapiens matrix metallopeptidase 9 [MMP9]) was confirmed with quantitative reverse-transcriptase polymerase chain reaction in post-silenced RB cells. Zymographic analysis revealed that the increase in MMP mRNA expression in the post-silenced RB cells did not correlate with corresponding enzyme activity. CONCLUSIONS: Our study revealed molecular regulatory changes induced by HMGA2 silencing in RB cancer cells, offering mechanistic insights into the anticancer potential. HMGA2 may be considered a promising candidate for gene silencing therapy in RB.
Project description:Parasites can be used as unique markers to investigate host evolutionary history, independent of host data. Here we show that modern human head lice, Pediculus humanus, are composed of two ancient lineages, whose origin predates modern Homo sapiens by an order of magnitude (ca. 1.18 million years). One of the two louse lineages has a worldwide distribution and appears to have undergone a population bottleneck ca. 100,000 years ago along with its modern H. sapiens host. Phylogenetic and population genetic data suggest that the other lineage, found only in the New World, has remained isolated from the worldwide lineage for the last 1.18 million years. The ancient divergence between these two lice is contemporaneous with splits among early species of Homo, and cospeciation analyses suggest that the two louse lineages codiverged with a now extinct species of Homo and the lineage leading to modern H. sapiens. If these lice indeed codiverged with their hosts ca. 1.18 million years ago, then a recent host switch from an archaic species of Homo to modern H. sapiens is required to explain the occurrence of both lineages on modern H. sapiens. Such a host switch would require direct physical contact between modern and archaic forms of Homo.
Project description:Neanderthal diets are reported to be based mainly on the consumption of large and medium sized herbivores, while the exploitation of other food types including plants has also been demonstrated. Though some studies conclude that early Homo sapiens were active hunters, the analyses of faunal assemblages, stone tool technologies and stable isotopic studies indicate that they exploited broader dietary resources than Neanderthals. Whereas previous studies assume taxon-specific dietary specializations, we suggest here that the diet of both Neanderthals and early Homo sapiens is determined by ecological conditions. We analyzed molar wear patterns using occlusal fingerprint analysis derived from optical 3D topometry. Molar macrowear accumulates during the lifespan of an individual and thus reflects diet over long periods. Neanderthal and early Homo sapiens maxillary molar macrowear indicates strong eco-geographic dietary variation independent of taxonomic affinities. Based on comparisons with modern hunter-gatherer populations with known diets, Neanderthals as well as early Homo sapiens show high dietary variability in Mediterranean evergreen habitats but a more restricted diet in upper latitude steppe/coniferous forest environments, suggesting a significant consumption of high protein meat resources.
Project description:While genome resources for Homo sapiens have allowed for major advances in a variety of fields of research, the current genome build (GRCh38) remains incomplete. In this study, we isolated unmappable reads from 45 individuals previously sequenced as part of the '1000 Genomes Project'. We were able to assemble these reads, map many contigs to their respective genomic loci, and identify orthologies to genetic content previously unknown in the human genome.
Project description:Next Generation Sequencing of Unmethylated Alu (NSUMA) interrogation of more than 130,000 individual Alus for differential methylation with concomitant analysis of copy number variations applied to the study of hypomethylation in primates. 3 replicates of Gorilla gorilla, Pan troglodytes, Pongo pygmaeus and Homo sapiens were studied.
Project description:The human genome is littered by endogenous retrovirus sequences (HERVs), which constitute up to 8% of the total genomic sequence. The sequencing of the human (Homo sapiens) and chimpanzee (Pan troglodytes) genomes has facilitated the evolutionary study of ERVs and related sequences. We screened both the human genome (version hg16) and the chimpanzee genome (version PanTro1) for ERVs and conducted a phylogenetic analysis of recent integrations. We found a number of recent integrations within both genomes. They segregated into four groups. Two larger gammaretrovirus-like groups (PtG1 and PtG2) occurred in chimpanzees but not in humans. The PtG sequences were most similar to two baboon ERVs and a macaque sequence but neither to other chimpanzee ERVs nor to any human gammaretrovirus-like ERVs. The pattern was consistent with cross-species transfer via predation. This appears to be an example of horizontal transfer of retroviruses with occasional fixation in the germ line.
Project description:Whole-genome single-base resolution methylcytosine and hydroxymethylcytosine maps reveal profound changes that occur during frontal cortex development in humans and mice. Overall design: MethylC-Seq, TAB-Seq, RNA-Seq and hmC-IP (CMS-IP and biotin-glucosyl tagging) from Homo sapiens and Mus musculus frontal cortex tissue and neural sorted cell populations. Additionally, MethylC-Seq was performed on the HUES6 embryonic stem cell line (Homo sapiens).
Project description:The broad class of tasks in genetics and epigenetics can be reduced to the study of various features that are distributed over the genome (genome tracks). The rapid and efficient processing of the huge amount of data stored in the genome-scale databases cannot be achieved without the software packages based on the analytical criteria. However, strong inhomogeneity of genome tracks hampers the development of relevant statistics. We developed the criteria for the assessment of genome track inhomogeneity and correlations between two genome tracks. We also developed a software package, Genome Track Analyzer, based on this theory. The theory and software were tested on simulated data and were applied to the study of correlations between CpG islands and transcription start sites in the Homo sapiens genome, between profiles of protein-binding sites in chromosomes of Drosophila melanogaster, and between DNA double-strand breaks and histone marks in the H. sapiens genome. Significant correlations between transcription start sites on the forward and the reverse strands were observed in genomes of D. melanogaster, Caenorhabditis elegans, Mus musculus, H. sapiens, and Danio rerio. The observed correlations may be related to the regulation of gene expression in eukaryotes. Genome Track Analyzer is freely available at http://ancorr.eimb.ru/.