Project description:UNLABELLED: PREMISE OF THE STUDY:We report the de novo assembly and characterization of the transcriptomes of Brachypodium sylvaticum (slender false-brome) accessions from native populations of Spain and Greece, and an invasive population west of Corvallis, Oregon, USA. • METHODS AND RESULTS:More than 350 million sequence reads from the mRNA libraries prepared from three B. sylvaticum genotypes were assembled into 120,091 (Corvallis), 104,950 (Spain), and 177,682 (Greece) transcript contigs. In comparison with the B. distachyon Bd21 reference genome and GenBank protein sequences, we estimate >90% exome coverage for B. sylvaticum. The transcripts were assigned Gene Ontology and InterPro annotations. Brachypodium sylvaticum sequence reads aligned against the Bd21 genome revealed 394,654 single-nucleotide polymorphisms (SNPs) and >20,000 simple sequence repeat (SSR) DNA sites. • CONCLUSIONS:To our knowledge, this is the first report of transcriptome sequencing of invasive plant species with a closely related sequenced reference genome. The sequences and identified SNP variant and SSR sites will provide tools for developing novel genetic markers for use in genotyping and characterization of invasive behavior of B. sylvaticum.
Project description:The genetic transformation of monocot grasses is a resource intensive process, the quality and efficiency of which is dependent in part upon the method of DNA introduction, as well as the ability to effectively separate transformed from wildtype tissue. Agrobacterium-mediated transformation of Brachypodium has relied mainly on Agrobacterium tumefaciens strain AGL1. Currently the antibiotic hygromycin B has been the selective agent of choice for robust identification of transgenic calli in Brachypodium distachyon and Brachypodium sylvaticum but few other chemicals have been shown to work as well for selection of transgenic Brachypodium cells in tissue culture. This study demonstrates that Agrobacterium rhizogenes strain 18r12v and paromomycin selection can be successfully used for the efficient generation of transgenic B. distachyon and B. sylvaticum. Additionally we observed that the transformation rates were similar to or higher than those obtained with A. tumefaciens strain AGL1 and hygromycin selection. The A. rhizogenes strain 18r12v harboring the pARS1 binary vector and paromomycin selection is an effective means of generating transgenic Brachypodium plants. This novel approach will facilitate the transgenic complementation of T-DNA knockout mutants of B. distachyon which were created using hygromycin selection, as well as aid the implementation of more complex genome manipulation strategies which require multiple rounds of transformation.
Project description:A lectin has been isolated from embryos of a false brome grass species (Brachypodium sylvaticum) by affinity chromatography on immobilized N-acetylglucosamine. It is a dimeric protein of two identical subunits of mol.wt. 18 000. Although it resembles cereal lectins with respect to its biochemical and physicochemical properties, it differs structurally in several aspects from wheat-germ-agglutinin-like lectins.