10X genomics single cell RNA sequencing of tumor sections from tumor bearing KrasG12D/+Lkb1fl/fl(KL) mice after Ad-cre injection for 10 weeks
Ontology highlight
ABSTRACT: 10X genomics single cell RNA sequencing of tumor sections from tumor bearing KrasG12D/+Lkb1fl/fl(KL) mice after Ad-cre injection for 10 weeks
Project description:Krebs von den Lungen-6 (KL-6), a mucinous sialylated sugar chain on human mucin-1 glycoprotein (MUC1), is a diagnostic marker for interstitial lung diseases. Furthermore, elevated serum KL-6 levels have been observed in certain malignant tumor types of epithelial origin. The expression of MUC1 has been observed in patients with epithelial ovarian cancer (EOC) and is considered a potential therapeutic target. In the present study, KL-6 serum levels were investigated in patients clinically suspected of having malignant ovarian tumors. A total of 219 patients were enrolled in the study, which analyzed their serum KL-6 levels in addition to tumor expression of MUC1 using immunohistochemistry. High serum KL-6 levels were predominantly observed in patients with EOC, and did not occur in patients with benign or borderline tumors. The level of serum KL-6 was highly correlated with tumor stage, grade and histological type, and demonstrated superior sensitivity for the detection of ovarian cancer compared with that of serum cancer antigen 125. High serum KL-6 was significantly associated with shorter progression-free survival. In addition, tumor MUC1 expression status was significantly correlated with serum KL-6 levels. These data suggest that serum KL-6 may be a useful, non-invasive biomarker surrogate for tumor MUC1 expression in future clinical trials of MUC1-targeted therapy.
Project description:Aging is characterized by a reduced ability to defend against stress, an inability to maintain homeostasis, and an increased risk of disease. In this study, a metabolomics approach was used to identify novel metabolic pathways that are perturbed in a mouse model of accelerated aging (SAMP1/kl-/-) and to gain new insights into the metabolic associations of the metformin derivative HL156A. Extensive inflammation and calcification were observed in the tissues of the SAMP1/kl-/- mice with premature aging. In mouse embryonic fibroblasts (MEFs) obtained from SAMP1/kl-/- mice, we observed that HL156A induced FOXO1 expression through inhibition of the IGF-1/AKT/mTOR signaling pathways. Treatment of HL156A decreased reactive oxygen species production and enhanced mitochondrial transmembrane potential in SAMP1/kl-/- MEFs. A metabolomic profile analysis showed that HL156A increased the GSH/GSSG ratio in the kidneys of SAMP1/kl-/- mice (8-12 weeks old). In addition, treating SAMP1/kl-/- mice with HL156A (30 mg/kg) for 4 weeks improved survival and decreased the significant elevation of oxidized GSH (GSSG) that was observed in SAMP1/kl-/- mice. In histological sections, HL156A administered SAMP1/kl-/- mice exhibited a decrease in excessive calcification. Based on these findings, we conclude that the new metformin derivative HL156A may inhibit oxidative damage by inducing glutathione metabolism and antioxidant pathways.
Project description:Rationale: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with few therapeutic targets and rare effective treatments. Over 90% of PDAC tumors bear a Kras mutation, and the single-site mutation G12D (KrasG12D) is most prevalent. Methods: Here, we applied the CRISPR-CasRx system to silence the mutant KrasG12D transcript in PDAC cells. We also used a capsid-optimized adenovirus-associated virus 8 vector (AAV8) to deliver the CRISPR-CasRx system into PDAC orthotopic tumors and patient-derived tumor xenografts (PDX). Results: Our data showed that guided by a KrasG12D-specific gRNA, CasRx is able to precisely and efficiently silence the mutant KrasG12D expression in PDAC cells. The knockdown of mutant KrasG12D by CasRx abolishes the aberrant activation of downstream signaling induced by mutant KrasG12D and subsequently suppresses the tumor growth and improves the sensitivity of gemcitabine in PDAC. Additionally, delivering CasRx-gRNA via AAV8 into the orthotopic KrasG12D PDAC tumors substantially improves the survival of mice without obvious toxicity. Furthermore, targeting KrasG12D through CasRx suppresses the growth of PDAC PDXs. In conclusion, our study provides a proof-of-concept that CRISPR-CasRx can be utilized to target and silence mutant KrasG12D transcripts and therefore inhibit PDAC malignancy.
Project description:Previous studies have suggested that Klotho provides reno-protection against unilateral ureteral obstruction (UUO)-induced renal tubulointerstitial fibrosis (RTF). Because the existing studies are mainly performed using heterozygous Klotho mutant (HT) mice, we focused on the effect of UUO on homozygous Klotho mutant (kl/kl) mice. UUO kidneys from HT mice showed a significantly higher level of RTF and TGF-?/Smad3 signaling than wild-type (WT) mice, whereas both were greatly suppressed in kl/kl mice. Primary proximal tubular epithelial culture cells isolated from kl/kl mice showed no suppression in TGF-?1-induced epithelial mesenchymal transition (EMT) compared to those from HT mice. In the renal epithelial cell line NRK52E, a large amount of inorganic phosphate (Pi), FGF23, or calcitriol was added to the medium to mimic the in vivo homeostasis of kl/kl mice. Neither Pi nor FGF23 antagonized TGF-?1-induced EMT. In contrast, calcitriol ameliorated TGF-?1-induced EMT in a dose dependent manner. A vitamin D3-deficient diet normalized the serum 1,25 (OH)2 vitamin D3 level in kl/kl mice and enhanced UUO-induced RTF and TGF-?/Smad3 signaling. In conclusion, the alleviation of UUO-induced RTF in kl/kl mice was due to the TGF-?1 signaling suppression caused by an elevated serum 1, 25(OH)2 vitamin D3.
Project description:The molecular identity and function of the Drosophila melanogaster Y-linked fertility factors have long eluded researchers. Although the D. melanogaster genome sequence was recently completed, the fertility factors still were not identified, in part because of low cloning efficiency of heterochromatic Y sequences. Here we report a method for iterative blast searching to assemble heterochromatic genes from shotgun assemblies, and we successfully identify kl-2 and kl-3 as 1beta- and gamma-dynein heavy chains, respectively. Our conclusions are supported by formal genetics with X-Y translocation lines. Reverse transcription-PCR was successful in linking together unmapped sequence fragments from the whole-genome shotgun assembly, although some sequences were missing altogether from the shotgun effort and had to be generated de novo. We also found a previously undescribed Y gene, polycystine-related (PRY). The closest paralogs of kl-2, kl-3, and PRY (and also of kl-5) are autosomal and not X-linked, suggesting that the evolution of the Drosophila Y chromosome has been driven by an accumulation of male-related genes arising de novo from the autosomes.
Project description:The c-mos proto-oncogene was one of the first proto-oncogenes to be cloned. Apart from its role in meiosis, many efforts have been made to illuminate the mechanisms by which c-mos might acts as an oncogene. Increased Mos expression was found in most human tumor tissues. However, a detailed role of c-mos in tumor progression remains unknown. In this study, we analyzed online databases to find out the correlation between Mos expression and poor survival rates in human cancer patients. Then, we crossed c-mos knockout mice with ApcMin or KrasG12D mice to generate intestinal cancer model and lung cancer model, respectively. Tumor progression was monitored, and the influence of c-mos deficiency on cancer formation was investigated.
Project description:Pancreatic cancers driven by KRAS mutations require additional mutations for tumor progression. The tumor suppressor FBXW7 is altered in pancreatic cancers, but its contribution to pancreatic tumorigenesis is unknown. To determine potential cooperation between Kras mutation and Fbxw7 inactivation in pancreatic tumorigenesis, we generated P48-Cre;LSL-KrasG12D;Fbxw7fl/fl (KFCfl/fl) compound mice. We found that KFCfl/fl mice displayed accelerated tumorigenesis: all mice succumbed to pancreatic ductal adenocarcinoma (PDA) by 40 days of age, with PDA onset occurring by 2 weeks of age. PDA in KFCfl/fl mice was preceded by earlier onset of acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia (PanIN) lesions, and associated with chromosomal instability and the accumulation of Fbxw7 substrates Yes-associated protein (Yap), c-Myc, and Notch. Using KFCfl/fl and FBXW7-deficient human pancreatic cancer cells, we found that Yap silencing attenuated growth promotion by Fbxw7 deletion. Our data demonstrate that Fbxw7 is a potent suppressor of KrasG12D-induced pancreatic tumorigenesis due, at least in part, to negative regulation of Yap.
Project description:The bone marrow (BM) niche is an important milieu where hematopoietic stem and progenitor cells (HSPCs) are maintained. Previous studies have indicated that genetic mutations in various components of the niche can affect hematopoiesis and promote hematologic abnormalities, but the impact of abnormal BM endothelial cells (BMECs), a crucial niche component, on hematopoiesis remains incompletely understood. To dissect how genetic alterations in BMECs could affect hematopoiesis, we have employed a novel inducible Tie2-CreERT2 mouse model, with a tdTomato fluorescent reporter, to introduce an oncogenic KRasG12D mutation specifically in the adult endothelial cells. Tie2-CreERT2;KRasG12D mice had significantly more leukocytes and myeloid cells in the blood with mostly normal BM HSPC populations and developed splenomegaly. Genotyping polymerase chain reaction revealed KRasG12D activation in BMECs but not hematopoietic cells, confirming that the phenotype is due to the aberrant BMECs. Competitive transplant assays revealed that BM cells from the KRasG12D mice contained significantly fewer functional hematopoietic stem cells, and immunofluorescence imaging showed that the hematopoietic stem cells in the mutant mice were localized farther away from BM vasculature and closer to the endosteal area. RNA sequencing analyses found an inflammatory gene network, especially tumor necrosis factor ?, as a possible contributor. Together, our results implicate an abnormal endothelial niche in compromising normal hematopoiesis.
Project description:Studies have suggested that dysregulation of peroxisomal lipid metabolism might play an important role in colorectal cancer (CRC) development. Here, we found that KrasG12D-driven CRC tumors demonstrate dysfunctional peroxisomal b-oxidation and identified Nudt7 (peroxisomal coenzyme A diphosphatase NUDT7) as one of responsible peroxisomal genes. In KrasG12D-driven CRC tumors, the expression level of Nudt7 was significantly decreased. Treatment of azoxymethane/dextran sulfate sodium (AOM/DSS) into Nudt7 knockout (Nudt7-/-) mice significantly induced lipid accumulation and the expression levels of CRC-related genes whereas xenografting of Nudt7-overexpressed LS-174T cells into mice significantly reduced lipid accumulation and the expression levels of CRC-related genes. Ingenuity pathway analysis of microarray using the colon of Nudt7-/- and Nudt7+/+ mice treated with AOM/DSS suggested Wnt signaling as one of activated signaling pathways in Nudt7-/- colons. Upregulated levels of ?-catenin were observed in the colons of KrasG12D and AOM/DSS-treated Nudt7-/- mice and downstream targets of ?-catenin such as Myc, Ccdn1, and Nos2, were also significantly increased in the colon of Nudt7-/- mice. We observed an increased level of palmitic acid in the colon of Nudt7-/- mice and attachment of palmitic acid-conjugated chitosan patch into the colon of mice induced the expression levels of b-catenin and CRC-related genes. Overall, our data reveal a novel role for peroxisomal NUDT7 in KrasG12D-driven CRC development.
Project description:SARS-CoV2-induced direct cytopathic effects against type II pneumocytes are suspected to play a role in mediating and perpetuating lung damage. The aim of this study was to evaluate serum KL-6 behavior in COVID-19 patients to investigate its potential role in predicting clinical course. Sixty patients (median age IQR, 65 (52-69), 43 males), hospitalized for COVID-19 at Siena COVID Unit University Hospital, were prospectively enrolled. Twenty-six patients were selected (median age IQR, 63 (55-71), 16 males); all of them underwent follow-up evaluations, including clinical, radiological, functional, and serum KL-6 assessments, after 6 (t1) and 9 (t2) months from hospital discharge. At t0, KL-6 concentrations were significantly higher than those at t1 (760 (311-1218) vs. 309 (210-408) p?=?0.0208) and t2 (760 (311-1218) vs 324 (279-458), p?=?0.0365). At t0, KL-6 concentrations were increased in patients with fibrotic lung alterations than in non-fibrotic group (755 (370-1023) vs. 305 (225-608), p?=?0.0225). Area under the receiver operating curve (AUROC) analysis showed that basal KL-6 levels showed good accuracy in discriminating patients with fibrotic sequelae radiologically documented (AUC 85%, p?=?0.0404). KL-6 concentrations in patients with fibrotic involvement were significantly reduced at t1 (755 (370-1023) vs. 290 (197-521), p?=?0.0366) and t2 (755 (370-1023) vs. 318 (173-435), p?=?0.0490). Serum concentrations of KL-6 in hospitalized COVID-19 patients may contribute to identify severe patients requiring mechanical ventilation and to predict those who will develop pulmonary fibrotic sequelae in the follow-up.