Project description:Plant terrestrialization brought forth the land plants (embryophytes). Embryophytes account for most of the biomass on land and evolved from streptophyte algae in a singular event. Recent advances have unraveled the first full genomes of the closest algal relatives of land plants; among the first such species was Mesotaenium endlicherianum. Here, we used fine-combed RNAseq in tandem with photophysiological assessment on Mesotaenium exposed to a continuous range of temperature and light cues. Our data establish a grid of 42 different conditions, resulting in 128 transcriptomes and ~1.5 Tbp (~9.9 billion reads) of data to study combinatory effects of stress response using clustering along gradients. We describe major hubs in genetic networks underpinning stress response and acclimation in the molecular physiology of Mesotaenium. Our data suggest that lipid droplet formation, plastid and cell wall-derived signals denominate molecular programs since more than 600 million years of streptophyte evolution—before plants made their first steps on land.
Project description:Organ formation in animals and plants relies on precise control of cell state transitions to turn stem cell daughters into fully differentiated cells. In plants, cells cannot rearrange due to shared cell walls. Thus, differentiation progression and the accompanying cell expansion must be tightly coordinated across tissues. PLETHORA (PLT) transcription factor gradients are unique in their ability to guide the progression of cell differentiation at different positions in the growing Arabidopsis root, which contrasts with well-described transcription factor gradients in animals specifying distinct cell fates within an essentially static context. To understand the output of the PLT gradient, we studied the gene set transcriptionally controlled by PLTs. Our work reveals how the PLT gradient can regulate cell state by region-specific induction of cell proliferation genes and repression of differentiation. Moreover, PLT targets include major patterning genes and autoregulatory feedback components, enforcing their role as master regulators of organ development. This SuperSeries is composed of the SubSeries listed below.
Project description:In plants, apical meristems allow continuous growth along the body axis. Within the root apical meristem (RAM), a group of slowly dividing quiescent center (QC) cells is thought to limit stem cell activity to directly neighboring cells (Cowels, 1956; van den Berg et al., 1997), thus endowing them with unique properties, distinct from displaced daughters. This binary identity of the stem cells stands in apparent contradiction with the more gradual changes in cell division potential (Bennett and Scheres, 2010) and differentiation (Yamaguchi et al., 2008; 2010; Furuta et al, 2014; Geldner, 2013; Masucci et al., 1996; Dolan and Costa, 2001) that occur as cells move further away from the QC. To address this paradox and to infer molecular organization of the root meristem, we used a whole-genome approach to determine dominant transcriptional patterns along root ontogeny zones. We found that the prevalent patterns are expressed in two opposing gradients. One is characterized by genes associated with development, the other enriched in differentiation genes. We confirmed these transcript gradients, and demonstrate that these translate to gradients in protein accumulation and gradual changes in cellular properties. We also show that gradients are genetically controlled through multiple pathways. Based on these findings, we propose that cells in the Arabidopsis root meristem gradually transition from ‘stemness’ towards differentiation.
2017-10-03 | GSE98097 | GEO
Project description:Soil microbial diversity along elevational gradients
| PRJNA772054 | ENA
Project description:Bacterial community along permafrost thawing gradients
Project description:Analysis of cell specific gene expression in mycorrhizal rice roots. Described in Roth, Chiapello et al. 2019 We used LCM to harvest arbusculated and adjacent systemic cells from mycorrhizal rice roots, along with cortical cells from mock inoculated plants
Project description:Leaves are colonised by a complex mix of microbes, termed the leaf microbiota. Even though the leaf microbiota is increasingly recognised as an integral part of plant life and health, our understanding of its interactions with the plant host is still limited. Here, mature, axenically grown Arabidopsis thaliana plants were spray-inoculated with different densities of the non-pathogenic bacterium Williamsia sp. Leaf354. High bacterial titers caused disease phenotypes and led to severe transcriptional reprogramming with a strong focus on plant defence.